Influence of Species on Phylogenetic Stability

M. Mariadassou A. Bar-Hen H. Kishino

Laboratoire MAP5 Université Paris Descartes

October 2008 Café des Sciences

M. Mariadassou (Université Paris Descartes)

Phylogeny Goal

Basic Assumption:

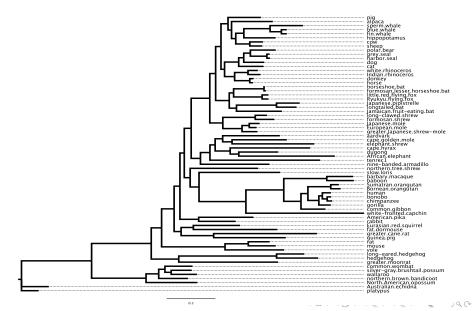
Evolution process can be thought of as a Tree where:

- \rightarrow Populations within species accumulate differences...
- \rightarrow ... and transforms into new species (=branches).

Main Objectives:

- Holy Grail: reconstruct the "Tree of Life";
- Pragmatically: reconstruct the evolutionary history of a group of species;
- Useful for gene annotation, functional genomics, gene network evolution study,...

Basic Assumption:


Evolution process can be thought of as a Tree where:

- $\rightarrow\,$ Populations within species accumulate differences...
- \rightarrow ... and transforms into new species (=branches).

Main Objectives:

- Holy Grail: reconstruct the "Tree of Life";
- Pragmatically: reconstruct the evolutionary history of a group of species;
- Useful for gene annotation, functional genomics, gene network evolution study,...

Example of Mammal Phylogeny

Species Leverage

Two levels of reconstruction

- Reconstruct the phylogeny:
 - Topology;
 - Branchs lengths.

• Reconstrut states nodes (at internal nodes).

Problems

- Genetic information available only for extant species, fossil records are unreliable;
- Reconstruction is a hard problem: the inferred tree might not be the true one.

A Wide Variety of Methods

Three Families of Methods:

- Distance-based:
 - Agglomerative approachs: (U/W)PGMA, Neighbor-Joining;
 - Iterative topology search and tree building;
- Parsimony-based: (un)corrected Maximum Parsimony;

Likelihood-based:

- Maximum Likelihood (ML);
- Bayesian Methods.

But recent focus on the last one:

Consensus for likelihood-based methods:

- More computation-intensive but...
- Outperform other methods.

Three Families of Methods:

- Distance-based:
 - Agglomerative approachs: (U/W)PGMA, Neighbor-Joining;
 - Iterative topology search and tree building;
- Parsimony-based: (un)corrected Maximum Parsimony;

• Likelihood-based:

- Maximum Likelihood (ML);
- Bayesian Methods.

But recent focus on the last one:

Consensus for likelihood-based methods:

- More computation-intensive but...
- Outperform other methods.

Three Families of Methods:

- Distance-based:
 - Agglomerative approachs: (U/W)PGMA, Neighbor-Joining;
 - Iterative topology search and tree building;
- Parsimony-based: (un)corrected Maximum Parsimony;
- Likelihood-based:
 - Maximum Likelihood (ML);
 - Bayesian Methods.

But recent focus on the last one:

Consensus for likelihood-based methods:

- More computation-intensive but...
- Outperform other methods.

Three Families of Methods:

- Distance-based:
 - Agglomerative approachs: (U/W)PGMA, Neighbor-Joining;
 - Iterative topology search and tree building;
- Parsimony-based: (un)corrected Maximum Parsimony;
- Likelihood-based:
 - Maximum Likelihood (ML);
 - Bayesian Methods.

But recent focus on the last one:

Consensus for likelihood-based methods:

- More computation-intensive but...
- Outperform other methods.

< ロト < 同ト < ヨト < ヨト

Data at Hand and Goal

Alignment Data

- Alignment $\mathcal{X} = (X_{ij})$ of size $s \times n$ (number of species \times sites);
- X_{ij} nucleotide *j* in taxon *i* valued in $\mathcal{A} = \{A, C, G, T\}$;
- **X**^(j) *j*-th line of \mathcal{X} , vector of size *n*;
- $\mathbf{X}^{(j)}$ sequence of taxon *j*;
- **X**_{*i*} *i*-th column of \mathcal{X} , vector of size *s*;
- X_i nucleotide pattern of site i.

Goal

• **Goal :** Find the binary tree with *s* leaves (one for each species) which represents the best explanation (=most probable) of the data, the maximum-likelihood tree.

・ 同ト ・ ヨト ・ ヨト

Data at Hand and Goal

Alignment Data

- Alignment $\mathcal{X} = (X_{ij})$ of size $s \times n$ (number of species \times sites);
- X_{ij} nucleotide *j* in taxon *i* valued in $\mathcal{A} = \{A, C, G, T\}$;
- $\mathbf{X}^{(j)}$ *j*-th line of \mathcal{X} , vector of size *n*;
- $\mathbf{X}^{(j)}$ sequence of taxon *j*;
- X_i i-th column of \mathcal{X} , vector of size s;
- X_i nucleotide pattern of site i.

Goal

• **Goal :** Find the binary tree with *s* leaves (one for each species) which represents the best explanation (=most probable) of the data, the maximum-likelihood tree.

イロト イポト イヨト イヨト

Alignment example

Fin Whale	Μ	Ν	Ε	Ν	L	F	Α	Р	F	М
Harbor Seal	M	N	E	Ν	L	F	Α	S	F	Α
Blue Whale	Μ	Ν	Ε	Ν	L	F	Α	Р	F	М
Grey Seal	Μ	Ν	Ε	Ν	L	F	Α	S	F	Т
Horse	Μ	Ν	Ε	Ν	L	F	Α	S	F	Α
Chimpanzee	М	Ν	Ε	Ν	L	F	Α	S	F	Α
Bonobo	М	Ν	Ε	Ν	L	F	Α	S	F	Α
Gorilla	М	Ν	Ε	Ν	L	F	Α	S	F	Ι
Bornean Orangutan	М	Ν	Ε	D	L	F	Т	Р	F	Т

• *s* = 9, *n* = 10

• $\mathcal{X}_{24} = \mathbf{N};$

- 4th site: $X_4 = (NNNNNNND)';$
- 2^{nd} taxon (Harbor Seal): $\mathbf{X}^{(2)} = \underline{MNENLFASFA}$.

I > <
I >
I

Data modelling:

- Assume $(\mathbf{X}_i)_{i=1}^n$ *i.i.d.* (simplifying but essential assumption);
- Choose generating evolution model $M(T, \theta_T)$;
- Discrete topology T and continuous model parameter θ_T .

Likelihood Maximization

- Compute likelihood: $L_M(T, \theta_T) = \mathbb{P}((\mathbf{X}_i); M, T, \theta_T);$
- For a given *T*, compute and store $\hat{\theta}_T$ maximizing $L(T, \theta_T)$;
- Repeat for all *T* and retrieve $(\hat{T}, \hat{\theta}_{\hat{T}})$.

A B > 4

Data modelling:

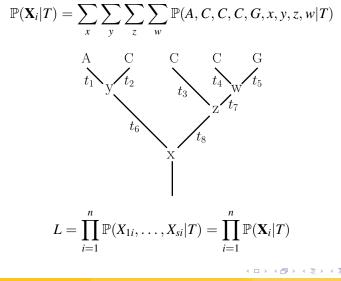
- Assume $(\mathbf{X}_i)_{i=1}^n$ *i.i.d.* (simplifying but essential assumption);
- Choose generating evolution model $M(T, \theta_T)$;
- Discrete topology T and continuous model parameter θ_T .

Likelihood Maximization

- Compute likelihood: $L_M(T, \theta_T) = \mathbb{P}((\mathbf{X}_i); M, T, \theta_T);$
- For a given *T*, compute and store $\hat{\theta}_T$ maximizing $L(T, \theta_T)$;
- Repeat for all *T* and retrieve $(\hat{T}, \hat{\theta}_{\hat{T}})$.

Discrete space continuous time Markov chain

• State space: $A = \{A, C, G, T\}$ (or $\mathcal{E} = \{amino-acids\}$);


• Generator (instantaneous rate matrix): $R = \prod Q$ with

$$Q = \begin{pmatrix} * & \alpha_{AC} & \alpha_{AG} & \alpha_{AT} \\ - & * & \alpha_{CG} & \alpha_{CT} \\ - & - & * & \alpha_{GT} \\ - & - & - & * \end{pmatrix} \quad \Pi = \begin{pmatrix} \pi_A & 0 & 0 & 0 \\ 0 & \pi_C & 0 & 0 \\ 0 & 0 & \pi_G & 0 \\ 0 & 0 & 0 & \pi_T \end{pmatrix}$$

- 4 ∃ ≻ 4

Computation of the likelihood on an example 1

For the following tree, for the given column:

M. Mariadassou (Université Paris Descartes)

Oct. 08 10 / 45

Inferred topology might not be the "true" topology;

Possible cause of uncertainties

- Small sequence lengths (data sampling);
- Low phylogenetic signal among the sites;
- Incomplete taxa sampling;
- Model misspecification;
- "Aberrant" species;
- Etc.

▶ Skip ?

Motivation: Filter Data

Sites source of errors:

- Sequencing errors;
- Alignment errors;
- Presence of an atypical DNA segment;

Goal

• . . .

• Quantify the influence of each site on the tree;

- Detect outlier sites;
- Infer a robust tree.

Motivation: Filter Data

Sites source of errors:

- Sequencing errors;
- Alignment errors;
- Presence of an atypical DNA segment;

Goal

• . . .

Quantify the influence of each site on the tree;

- Detect outlier sites;
- Infer a robust tree.

∃ ⊳

About the Influence Function

Influence Function: Definition

Let X_1, \ldots, X_n be *i.i.d.* with common d.f. F on \mathcal{R}^d and S(F) a functional of F. The influence function:

$$IF_{S,F}(x) = \lim_{\varepsilon \to 0} \frac{S[(1-\varepsilon)F + \varepsilon \delta_x] - S[F]}{\varepsilon}$$

measure the influence of a perturbation in direction x.

Empirical Version

For unknown *S* and finite size sample, $F \to F_n = \frac{1}{n} \sum_{j=1}^n \delta_{X_j}$, $\varepsilon \to -1/(n-1)$: $IF_{S,F_n}(X_i) = \lim_{\varepsilon \to 0} \frac{S[(1-\varepsilon)F_n + \varepsilon \delta_{X_i}] - S[F_n]}{(n-1)(S(F_n) - S(F_{n,-i}))}$

where $F_{n,-i}$ is the empirical distribution on all sites but *i*.

M. Mariadassou (Université Paris Descartes)

Species Leverage

About the Influence Function

Influence Function: Definition

Let X_1, \ldots, X_n be *i.i.d.* with common d.f. F on \mathcal{R}^d and S(F) a functional of F. The influence function:

$$IF_{S,F}(x) = \lim_{\varepsilon \to 0} \frac{S[(1-\varepsilon)F + \varepsilon \delta_x] - S[F]}{\varepsilon}$$

measure the influence of a perturbation in direction x.

Empirical Version

For unknown *S* and finite size sample, $F \to F_n = \frac{1}{n} \sum_{j=1}^n \delta_{X_j}$, $\varepsilon \to -1/(n-1)$: $IF_{S,F_n}(X_i) = \lim_{\varepsilon \to 0} \frac{S[(1-\varepsilon)F_n + \varepsilon \delta_{X_i}] - S[F_n]}{(n-1)(S(F_n) - \overset{\varepsilon}{S}(F_{n,-i}))}$

where $F_{n,-i}$ is the empirical distribution on all sites but *i*.

And for Phylogenies...

Definition

Let:

- $\mathbf{X} = (\mathbf{X}_1, \dots, \mathbf{X}_n)$ be the complete alignment,
- $\mathbf{X}_{-i} = \mathbf{X} \setminus \mathbf{X}_i$ all the sites but site *i*,
- $(\hat{T}, \hat{\theta}_{\hat{T}})$ the ML tree and associated parameters for X,
- $(\widehat{T_{-i}}, \hat{\theta}_{\widehat{T_{-i}}})$ the ML tree and associated parameters for \mathbf{X}_{-i} ,
- The statistic be:

$$l_{\hat{T}}(\hat{\theta}_{\hat{T}}|\mathbf{X}) = \frac{1}{n} \sum_{i=1}^{n} \log \mathbb{P}(\mathbf{X}_i | \hat{T}, \hat{\theta}_{\hat{T}})$$

The influence value of \mathbf{X}_i is then:

$$IF_{S,F_n}(\mathbf{X}_i) = (n-1) \left(l_{\hat{T}}(\hat{\theta}_{\hat{T}} | \mathbf{X}) - l_{\widehat{T_{-i}}}(\hat{\theta}_{\widehat{T_{-i}}} | \mathbf{X}_{-i}) \right)$$

< ロト < 同ト < ヨト < ヨト

And for Phylogenies...

Definition

Let:

- $\mathbf{X} = (\mathbf{X}_1, \dots, \mathbf{X}_n)$ be the complete alignment,
- $\mathbf{X}_{-i} = \mathbf{X} \setminus \mathbf{X}_i$ all the sites but site *i*,
- $(\hat{T}, \hat{\theta}_{\hat{T}})$ the ML tree and associated parameters for X,
- $(\widehat{T_{-i}}, \hat{\theta}_{\widehat{T_{-i}}})$ the ML tree and associated parameters for \mathbf{X}_{-i} ,
- The statistic be:

$$l_{\hat{T}}(\hat{\theta}_{\hat{T}}|\mathbf{X}) = \frac{1}{n} \sum_{i=1}^{n} \log \mathbb{P}(\mathbf{X}_i|\hat{T}, \hat{\theta}_{\hat{T}})$$

The influence value of X_i is then:

$$IF_{S,F_n}(\mathbf{X}_i) = (n-1) \big(l_{\hat{T}}(\hat{\theta}_{\hat{T}} | \mathbf{X}) - l_{\widehat{T_{-i}}}(\hat{\theta}_{\widehat{T_{-i}}} | \mathbf{X}_{-i}) \big)$$

< ロト < 同ト < ヨト < ヨト

Interpretation

- Positive value: enhanced support for the ML tree;
- Negative value: weakened support for the ML tree;
- Absolute value: strength of the support/disagreement;
- Many sites with small positive values and a few sites with large negative values.

Strategy towards greater stability

- Focus on outliers: sites with $IF(\mathbf{X}_i) < 0$;
- Rank them in increasing $IF(\mathbf{X}_i)$;
- Remove them one at the time until a stable tree is found.

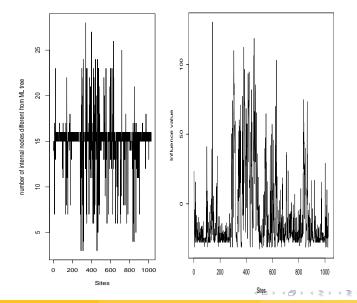
Interpretation

- Positive value: enhanced support for the ML tree;
- Negative value: weakened support for the ML tree;
- Absolute value: strength of the support/disagreement;
- Many sites with small positive values and a few sites with large negative values.

Strategy towards greater stability

- Focus on outliers: sites with $IF(\mathbf{X}_i) < 0$;
- Rank them in increasing $IF(\mathbf{X}_i)$;
- Remove them one at the time until a stable tree is found.

Interpretation


- Positive value: enhanced support for the ML tree;
- Negative value: weakened support for the ML tree;
- Absolute value: strength of the support/disagreement;
- Many sites with small positive values and a few sites with large negative values.

Strategy towards greater stability

- Focus on outliers: sites with $IF(\mathbf{X}_i) < 0$;
- Rank them in increasing $IF(\mathbf{X}_i)$;
- Remove them one at the time until a stable tree is found.

- "Lower mushrooms"
- Biology: widely unknown!
- Strong enough phylogenetic signal to correctly resolve the topology.
- 1026 sites, 158 OTUs, GTR model

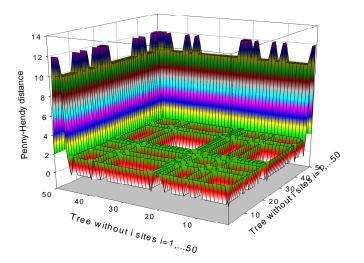
Information about sites

M. Mariadassou (Université Paris Descartes)

æ 17/45 Oct. 08

590

Distance between trees


0	20	18	18	18	18	18	18	18	20
20	0	2	2	2	2	2	2	2	2
18	2	0	0	0	0	0	0	0	2
18	2	0	0	0	0	0	0	0	2
18	2	0	0	0	0	0	0	0	2
18	2	0	0	0	0	0	0	0	2
18	2	0	0	0	0	0	0	0	2
18	2	0	0	0	0	0	0	0	2
18	2	0	0	0	0	0	0	0	2
20	2	2	2	2	2	2	2	2	0

 T_i : trees constructed without the *i* most influent sites. D_{ij} : Robinson-Foulds distance between T_i and T_j

▲ @ ▶ ▲ ⊇ ▶ ▲

Distance Between Trees

Distance between trees

Oct. 08 19 / 45

590

Species Leverage: Motivation and Goal

Species Leverage

• Goal: Study the stability of the tree with respect to the taxa;

 Motivation: Thanks to strange evolutionary features not taken into account by the inference method, some taxa may exert a strong pull toward a "wrong" phylogeny;

• Method:

- Infer the phylogeny with the whole taxa set;
- Remove taxa one at the time and infer a new tree on the smaller taxa set;
- For each taxon: count number differences between the two trees;
- For each internal node: count number of times it is retrieved;
- Compare them to maximum/expected values.

Species Leverage: Motivation and Goal

Species Leverage

- Goal: Study the stability of the tree with respect to the taxa;
- Motivation: Thanks to strange evolutionary features not taken into account by the inference method, some taxa may exert a strong pull toward a "wrong" phylogeny;

Method:

- Infer the phylogeny with the whole taxa set;
- Remove taxa one at the time and infer a new tree on the smaller taxa set;
- For each taxon: count number differences between the two trees;
- For each internal node: count number of times it is retrieved;
- Compare them to maximum/expected values.

Species Leverage: Motivation and Goal

Species Leverage

- Goal: Study the stability of the tree with respect to the taxa;
- Motivation: Thanks to strange evolutionary features not taken into account by the inference method, some taxa may exert a strong pull toward a "wrong" phylogeny;

Method:

- Infer the phylogeny with the whole taxa set;
- Remove taxa one at the time and infer a new tree on the smaller taxa set;
- For each taxon: count number differences between the two trees;
- For each internal node: count number of times it is retrieved;
- Compare them to maximum/expected values.

Definition

Let:

- $\mathbf{X} = \left(\mathbf{X}^{(1)}, \dots, \mathbf{X}^{(s)}\right)'$ be the complete alignment,
- $\mathbf{X}^{(-i)} = \mathbf{X} \setminus \mathbf{X}^{(i)}$ all the species but species *i*,
- \widehat{T} the ML tree and associated parameters for **X**,
- $\widehat{T}^{(-i)}$ the tree \widehat{T} after pruning species *i*,
- $\widehat{T^{(-i)}}$ the ML tree and associated

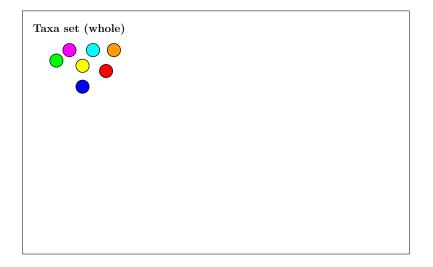
The Species Leverage Index (SLI) of species *i* is:

 $SLI(i) = d(\widehat{T}^{(-i)}, \widehat{T^{(-i)}})$

where d is any adapted distance.

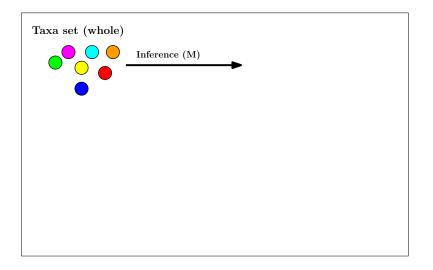
Definition

Let:

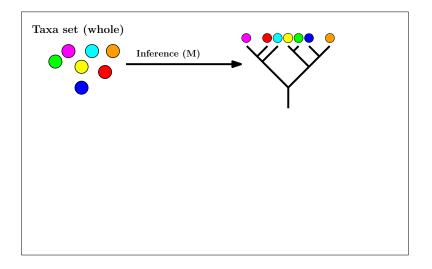

- $\mathbf{X} = \left(\mathbf{X}^{(1)}, \dots, \mathbf{X}^{(s)}\right)'$ be the complete alignment,
- $\mathbf{X}^{(-i)} = \mathbf{X} \setminus \mathbf{X}^{(i)}$ all the species but species *i*,
- \widehat{T} the ML tree and associated parameters for **X**,
- $\widehat{T}^{(-i)}$ the tree \widehat{T} after pruning species *i*,
- $\widehat{T^{(-i)}}$ the ML tree and associated

The Species Leverage Index (SLI) of species *i* is:

$$SLI(i) = d(\widehat{T}^{(-i)}, \widehat{T^{(-i)}})$$

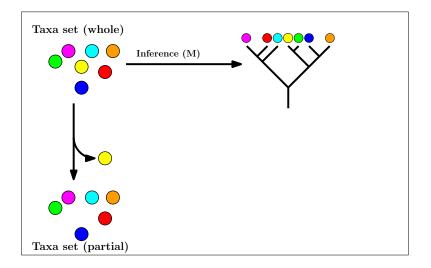

where d is any adapted distance .

Method

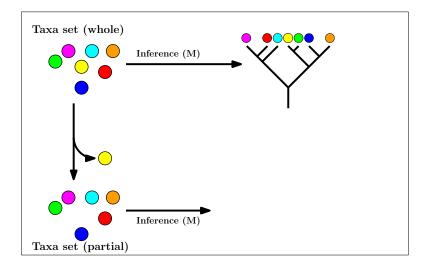


DQC

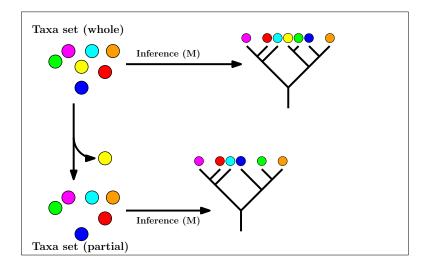
<ロト < 回ト < 回ト < 回ト



DQC

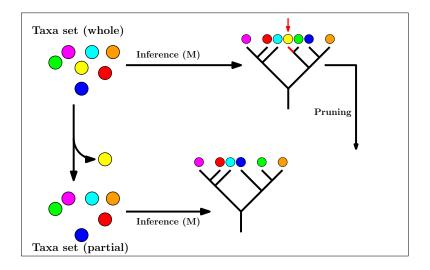

æ Oct. 08 24/45

DQC

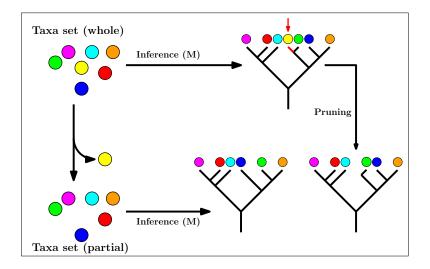


æ Oct. 08 25/45

DQC

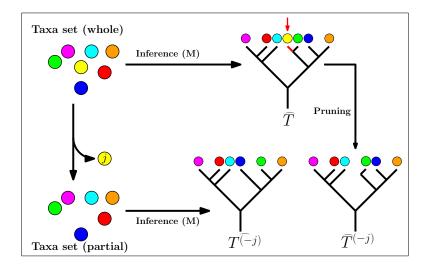

DQC

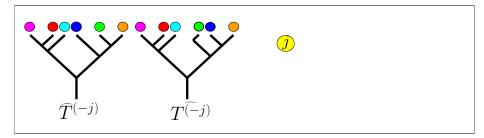
M. Mariadassou (Université Paris Descartes)


э Oct. 08 27/45

DQC

æ Oct. 08 28/45

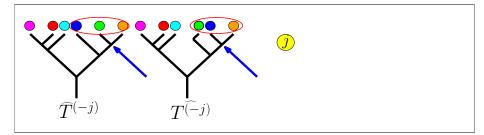

DQC


M. Mariadassou (Université Paris Descartes)

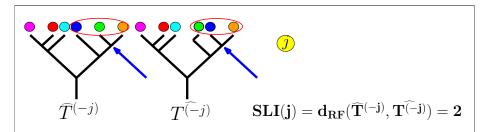
æ Oct. 08 29/45

DQC

■ ● ■ ● への
Oct. 08 30 / 45



M. Mariadassou (Université Paris Descartes)


Species Leverage

2 Oct. 08 31/45

DQC

DQC

M. Mariadassou (Université Paris Descartes)

Species Leverage

3 Oct. 08 31/45

590

ъ

イロト イロト イヨト イ

Definition

Let:

- X, $\mathbf{X}^{(-i)}, \widehat{T}, \widehat{T}^{(-i)}, \widehat{T^{(-i)}}$ defined as before,
- A an internal node of \hat{T} ,

The Nodes Leverage Index (NLI) of A is:

$$NLI(A) = \sum_{i=1}^{n} \mathbb{1}_{\widehat{T^{(-i)}}}(A)$$

with $\mathbb{1}_{\widehat{T(-i)}}(A)$ being 1 if A is present in $\overline{T^{(-i)}}$ and 0 otherwise.

Problems

• The taxa sets are different between \hat{T} and $\hat{T}^{(-i)}, \hat{T}^{(-i)};$

M. Mariadassou (Université Paris Descartes)

Definition

Let:

- X, $\mathbf{X}^{(-i)}, \widehat{T}, \widehat{T}^{(-i)}, \widehat{T^{(-i)}}$ defined as before,
- A an internal node of \hat{T} ,

The Nodes Leverage Index (NLI) of A is:

$$NLI(A) = \sum_{i=1}^{n} \mathbb{1}_{\widehat{T^{(-i)}}}(A)$$

with $\mathbb{1}_{\widehat{T^{(-i)}}}(A)$ being 1 if A is present in $\widehat{T^{(-i)}}$ and 0 otherwise.

Problems

• The taxa sets are different between \hat{T} and $\hat{T}^{(-i)}$, $T^{(-i)}$;

Definition

Let:

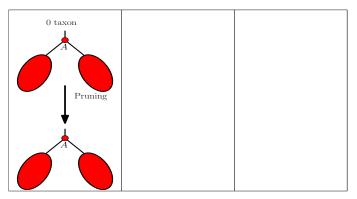
- X, $\mathbf{X}^{(-i)}, \widehat{T}, \widehat{T}^{(-i)}, \widehat{T^{(-i)}}$ defined as before,
- A an internal node of \widehat{T} ,

The Nodes Leverage Index (NLI) of A is:

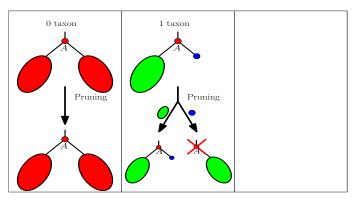
$$NLI(A) = \sum_{i=1}^{n} \mathbb{1}_{\widehat{T^{(-i)}}}(A)$$

with $\mathbb{1}_{\widehat{T(-i)}}(A)$ being 1 if A is present in $\widehat{T(-i)}$ and 0 otherwise.

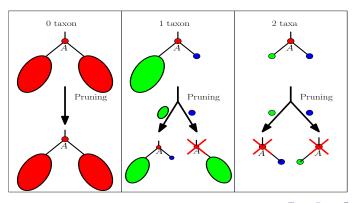
Problems

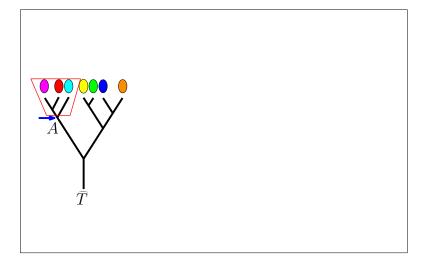

• The taxa sets are different between \hat{T} and $\hat{T}^{(-i)}$, $\hat{T}^{(-i)}$;

M. Mariadassou (Université Paris Descartes)

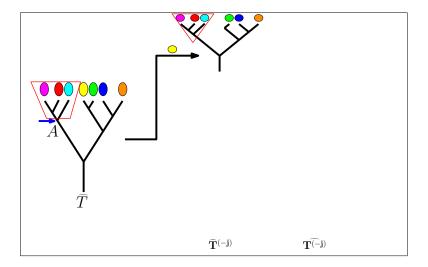

- For binary trees, three kinds of internal nodes: with 0, 1 or 2 taxon among the children;
- Problem arise only when removing a taxon among the descendants of the node.

- For binary trees, three kinds of internal nodes: with 0, 1 or 2 taxon among the children;
- Problem arise only when removing a taxon among the descendants of the node.

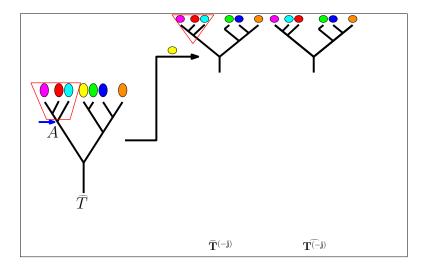

- For binary trees, three kinds of internal nodes: with 0, 1 or 2 taxon among the children;
- Problem arise only when removing a taxon among the descendants of the node.



- For binary trees, three kinds of internal nodes: with 0, 1 or 2 taxon among the children;
- Problem arise only when removing a taxon among the descendants of the node.



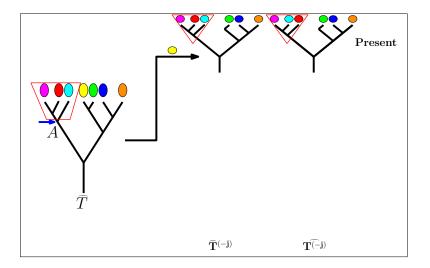
- For binary trees, three kinds of internal nodes: with 0, 1 or 2 taxon among the children;
- Problem arise only when removing a taxon among the descendants of the node.



DQC

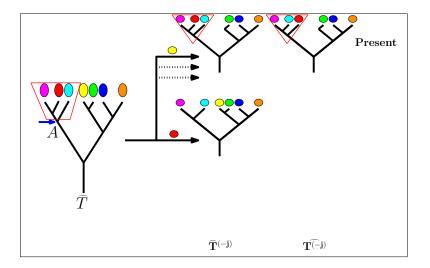


DQC


DQC

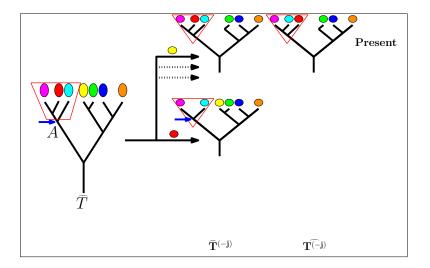
イロト イポト イヨト イヨ

DQC


イロト イポト イヨト イヨ

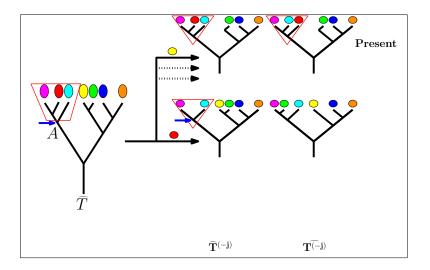
DQC

ъ

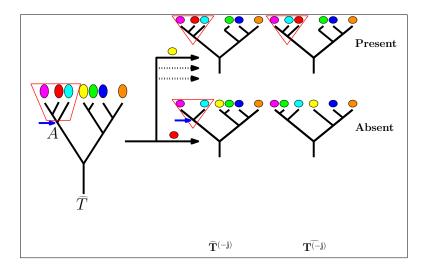

< ロ > < 団 > < 団 > <</p>

DQC

ъ

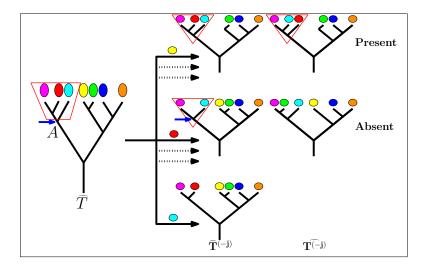

イロト イヨト イヨト イ

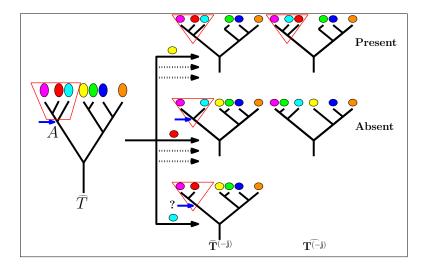
DQC


ъ

< ロ > < 団 > < 団 > <</p>

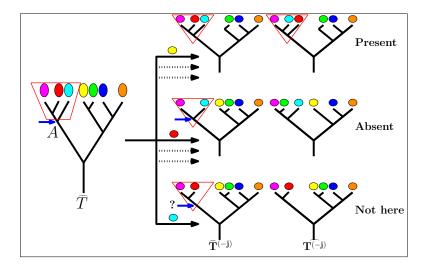
590


イロト イポト イヨト イヨ


590

ъ

< ロ > < 団 > < 団 > <</p>



DQC

э Oct. 08 34 / 45

DQC

3 Oct. 08 34 / 45

590

Interpretation

- SLI: Low value: adding/removing the species from the dataset has (almost) impact on the tree;
 - High value: "rogue" species, adding/removing it greatly affects the tree.
- NLI: High value: stable nodes, highly resilient to taxon sampling;
 - Low value: weak nodes, highly sensitive to taxon sampling.

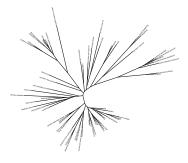
Strategy towards greater stability

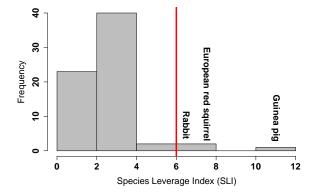
- Focus on rogues species: species with high SLI;
- Rank them in increasing SLI;
- Remove them one at the time until a stable tree is found.

• I > • = • •

Interpretation

- SLI: Low value: adding/removing the species from the dataset has (almost) impact on the tree;
 - High value: "rogue" species, adding/removing it greatly affects the tree.
- NLI: High value: stable nodes, highly resilient to taxon sampling;
 - Low value: weak nodes, highly sensitive to taxon sampling.

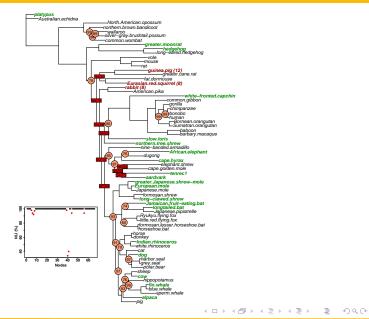

Strategy towards greater stability


- Focus on rogues species: species with high SLI;
- Rank them in increasing SLI;
- Remove them one at the time until a stable tree is found.

→ Ξ → < Ξ</p>

Data: Placental Mammal Phylogeny

- Mitochondrial genome of 68 mammals;
- Amino Acids sequences;
- Sequences are 3658 sites long;
- Phylogeny published in Nikaido et al. in 2003.

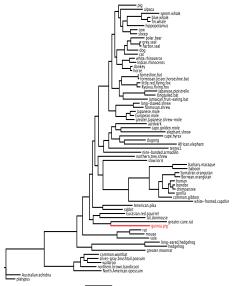

æ Oct. 08 37 / 45

ъ

・ロト ・回ト ・ヨト

590

Complete Phylogeny

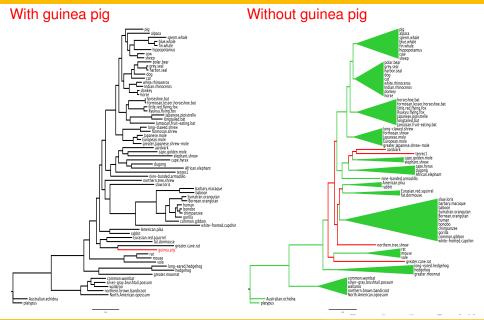

M. Mariadassou (Université Paris Descartes)

Oct. 08 38 / 45

Guinea Pig

With guinea pig

Without guinea pig


M. Mariadassou (Université Paris Descartes)

Species Leverage

Oct. 08 39 / 45

イロト イポト イヨト 一日

Guinea Pig



M. Mariadassou (Université Paris Descartes)

Species Leverage

Oct. 08 39 / 45

Rogue Species

Three sources of uncertainties

- Outlier sites;
- Rogue species.

Three tools to detect them

- Influence functions;
- Species Leverage.

Three sources of uncertainties

- Outlier sites;
- Rogue species.

Three tools to detect them

- Influence functions;
- Species Leverage.

- Impact of the evolution model;
- Bootstrap: global measure of uncertainty;
- IF,SLI,NLI are local ones to pinpoint the sources of uncertainties;
- Decompose the "black box" of bootstrap values;
- Anything else I can think about.

- 4 ∃ ≻ 4

Computation of the likelihood on an example 2

Markovian properties give:

$$\begin{split} \mathbb{P}(A, C, C, C, G, x, y, z, w|T) &= \\ \mathbb{P}(x) \mathbb{P}(y|x, t_6) \mathbb{P}(A|y, t_1) \mathbb{P}(C|y, t_2) \\ \mathbb{P}(z|x, t_8) \mathbb{P}(C|z, t_3) \\ \mathbb{P}(w|z, t_7) \mathbb{P}(C|w, t_4) \mathbb{P}(G|w, t_5) \end{split}$$

which can be rewritten:

$$\mathbb{P}(\mathbf{X}_{i}|T) = \sum_{x} \mathbb{P}(x) \left(\sum_{y} \mathbb{P}(y|x, t_{6}) \mathbb{P}(A|y, t_{1}) \mathbb{P}(C|y, t_{2}) \right) \\ \times \left(\sum_{z} \mathbb{P}(z|x, t_{8}) \mathbb{P}(C|z, t_{3}) \right) \\ \left(\sum_{w} \mathbb{P}(w|z, t_{7}) \mathbb{P}(C|w, t_{4}) \mathbb{P}(G|w, t_{5}) \right)$$

M. Mariadassou (Université Paris Descartes)

Oct. 08 43 / 45

< 🗇 🕨 < 🖃 🕨

- The factorization structure mimics the tree (A,C)(C,(C,G)) of interest.
- Felsenstein (1989) developed a recursive pruning algorithm to quickly compute the likelihood a phylogeny, from the leaves to the root.

The GTR model is reversible:

$$\mathbb{P}(x)\mathbb{P}(y|x,t_6) = \mathbb{P}(y)\mathbb{P}(x|y,t_6)$$

No flow of time:we infer an unrooted tree.

But there still exists $3 \times 5 \times 7 \times \cdots \times (2s-5)$ unrooted trees. Except for very small dataset, exhaustive search is impossible. \bullet End of the example