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Phylogeny Goal

Basic Assumption:

Evolution process can be thought of as a Tree where:
— Populations within species accumulate differences...
— ... and transforms into new species (=branches).
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Phylogeny Goal

Basic Assumption:

Evolution process can be thought of as a Tree where:
— Populations within species accumulate differences...
— ... and transforms into new species (=branches).

Main Objectives:
@ Holy Grail: reconstruct the "Tree of Life";

@ Pragmatically: reconstruct the evolutionary history of a group of
species;

@ Useful for gene annotation, functional genomics, gene network
evolution study,...

@ Different from coalescence, species are not identical.
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Example of Mammal Phylogeny
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Reconstruction Goals and Problems

Two levels of reconstruction
@ Reconstruct the phylogeny:

e Topology;
e Branchs lengths.

@ Reconstrut states nodes (at internal nodes).

Problems

@ Genetic information available only for extant species, fossil
records are unreliable;

@ Reconstruction is a hard problem: the inferred tree might not be
the true one.
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A Wide Variety of Methods

Three Families of Methods:

@ Distance-based:

e Agglomerative approachs: (U/W)PGMA, Neighbor-Joining;
o lterative topology search and tree building;
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A Wide Variety of Methods

Three Families of Methods:

@ Distance-based:

e Agglomerative approachs: (U/W)PGMA, Neighbor-Joining;
o lterative topology search and tree building;

@ Parsimony-based: (un)corrected Maximum Parsimony;
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A Wide Variety of Methods

Three Families of Methods:
@ Distance-based:
e Agglomerative approachs: (U/W)PGMA, Neighbor-Joining;
o lterative topology search and tree building;
@ Parsimony-based: (un)corrected Maximum Parsimony;
@ Likelihood-based:

e Maximum Likelihood (ML);
e Bayesian Methods.
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A Wide Variety of Methods

Three Families of Methods:

@ Distance-based:

e Agglomerative approachs: (U/W)PGMA, Neighbor-Joining;
o lterative topology search and tree building;

@ Parsimony-based: (un)corrected Maximum Parsimony;
@ Likelihood-based:

e Maximum Likelihood (ML);
e Bayesian Methods.

But recent focus on the last one:
Consensus for likelihood-based methods:
@ More computation-intensive but...
@ Outperform other methods.
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Data at Hand and Goal

Alignment Data
@ Alignment X = (X;;) of size s x n (number of species x sites);

@ X;; nucleotide j in taxon i valued in A = {A,C,G,T};
@ XU j-th line of X, vector of size n;

@ XU) sequence of taxon j;

@ X, i-th column of X, vector of size s;

@ X; nucleotide pattern of site i.
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Data at Hand and Goal

Alignment Data
@ Alignment X = (X;;) of size s x n (number of species x sites);

@ X;; nucleotide j in taxon i valued in A = {A,C,G,T};
@ XU) j-th line of X, vector of size n;

@ XU) sequence of taxon j;

@ X; i-th column of X, vector of size s;

@ X, nucleotide pattern of site i.

Goal

@ Goal: Find the binary tree with s leaves (one for each species)
which represents the best explanation (=most probable) of the
data, the maximum-likelihood tree.
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Data Structure: An Example

Alignment example

Fin Whale M N ENULVF AP F M
Harbor Seal M N ENLVF A S F A
Blue Whale M N ENULVF AP F M
Grey Seal M N ENLVFASFT
Horse M N ENULVFA S F A
Chimpanzee M N ENVLVFA S F A
Bonobo M N ENLVFA S F A
Gorilla M N ENULVF A S F 1
Bornean Orangutan M N E D L F T P F T

@s5=9n=10

@ Xy =N;

@ 4th site: X, = (NNNNNNNND)’;
@ 2" taxon (Harbor Seal): X(?) = MNENLFASFA.
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@ Assume (X;)", ii.d. (simplifying but essential assumption);
@ Choose generating evolution model M(T, 07);

@ Discrete topology T and continuous model parameter 67.




Inference of the ML Tree

Data modelling:
@ Assume (X;)", i.i.d. (simplifying but essential assumption);
@ Choose generating evolution model M(T, 07);

@ Discrete topology T and continuous model parameter 67.

Likelihood Maximization
@ Compute likelihood: Ly/(T,6r) = P((X;); M, T, 07);

@ For a given T, compute and store 6 maximizing L(T, 67);

@ Repeat for all T and retrieve (7', 6;).
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Evolution Model

Discrete space continuous time Markov chain
@ State space: A= {A,C,G,T} (or £ = {amino-acids});

@ Generator (instantaneous rate matrix): R = I1Q with

¥  QAC OAG QAT m 0 0 O

. — * QcG Qcr _ 0 m¢ 0 O
Q o — — * aGrT I = 0 0 TG 0
= = — * 0O 0 O =y
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Computation of the likelihood on an example 1

For the following tree, for the given column:

P(X{|T) = ZZZZ]P’A C,C,C,G,x,y,z,w|T)

C

t\/ t\/tr

\/“

L=][PXy,....x|T) = [[PXiT)
i=1

i=1

» Example ?
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The uncertainty issue

Inferred topology might not be the "true" topology;

Possible cause of uncertainties
@ Small sequence lengths (data sampling);

Low phylogenetic signal among the sites;

Incomplete taxa sampling;

Model misspecification;

"Aberrant" species;

o Etc.
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Notations

@ X; i.i.d. with shared distribution Q;
@ Empirical distribution 0, = >, dx, of the nucleotides;

@ Support of O made of all patterns with positive probability:

N; Cc A Card(N;) < 4°
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Notations

@ X; i.i.d. with shared distribution Q;
@ Empirical distribution 0, = >, dx, of the nucleotides;

@ Support of O made of all patterns with positive probability:

N; Cc A Card(N;) < 4°

@ True and empirical mean log-likelihood of T

(" = EgllogP(X;T)] = Y Q(x)logP(x; T)
xGN;

(I = Eg,logP(X;T)] = ZlogIP’ X;;T)

where P(x; T) is the probability of pattern x under model T;
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¢T as a scalar product

@ Replace Q and Q,, true and empirical pattern distribution, with:

0 = Po(X=1x)
0, = Po,(X
0 = (¢")xen; and 6, = (0y)xen;;
@ Then, with log PT = (log P(x, T))en,-

= EpllogP(X;T)]
“ Eg,[log P(X; T)]
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¢T as a scalar product

@ Replace Q and Q,, true and empirical pattern distribution, with:

o = Po(X=1)
b, = Po,(X . Z x=9
0 = (6")xen; and 0, = (6%)en;;
@ Then, with log PT = (log P(x, T))xen,-

' = EpllogP(X;T)] = 6.logP"
T Eo,[logP(X;T)] = 6,.logP"

o /T —(I'=(6-80,).logP"
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Large Deviations |

o /T —(I'=(6-80,).logP"

@ To control ¢T — ¢T we need to control 8 — 0, the difference

n’

between the true and the empirical pattern dlstrlbutlon,
@ Probability of {||@ — 6,|| > ¢} decreases exponentially towards 0;

@ At what rate?

Using large deviation tools, we obtain:

logP(||@ — 6, >¢) _log|N| = log2 —¢?
< -
n - n + n +Jrcr61/\)/(9x(1—9x+e)
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This leads to:

log P (|¢7 — ¢T| > &) < log || N log2
n

_52
4 max
" n
3

XEN m

«0O0>» «F»>» «E» «E» o
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Large Deviations |l

This leads to:
logP (|¢T — 01| > 2
og (] Wl > E) < log || N log2 + max é _
n n n xeN; 05(1 — 6% + €)
Where é = ___c
Nl log PT|"
Remarks:

@ For a given confidence level, we know how n evolves with s;
@ Sharp bound for small ; = accurate estimation of |Nj]| is crucial;

@ For simple models (JC69,K2P), patterns (e.g. YYRR) can be
merged = smaller V.
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Inversions events

@ ML methods based on the model ranking induced by their
likelihood score;

@ But inference done on ranking induced by empirical likelihood
score;
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Inversions events

@ ML methods based on the model ranking induced by their
likelihood score;

@ But inference done on ranking induced by empirical likelihood
score;

@ Inversion events between models T and 7’ can happen;
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Inversions events

@ ML methods based on the model ranking induced by their
likelihood score;

@ But inference done on ranking induced by empirical likelihood
score;

@ Inversion events between models T and 7’ can happen;

@ When comparing two models T and T’, the true ranking may be
different from the empirical one;

@ How often does such an event happens?

@ How does its probability P(¢7 — ¢I" < 0[¢T — ¢ > 0) decreases
when available information increases?
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Concentration results

Still using large deviation tools, we obtain:
Proposition

Assume that model T is better than model T' (¢T > ('), then the
probability that T’ is better than T for our sample is such that:

logP(¢/T — 01" < 0) < log || + max —e?
n n xeN; 0%(1 — 6% +¢)
_ g _ —
where ¢ = Niliog T —log 7| and 0 = (Po(X = x))xen;-

Remarks:

@ Expected result: inversion probability decreases with ¢7 — ¢7';

@ Patterns with same likelihood under T and 7’ can be removed
from M.
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Sites source of errors:
@ Sequencing errors;

@ Alignment errors;

@ Presence of an atypical DNA segment;
° ...

«0>» «F»r « =>»
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Motivation and Goal

Motivation: Filter Data
Sites source of errors:
@ Sequencing errors;

@ Alignment errors;

@ Presence of an atypical DNA segment;
o ...

Goal

@ Quantify the influence of each site on the tree;
@ Detect outlier sites;

@ Infer a robust tree.
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About the Influence Function

Influence Function: Definition

Let Xi,...,X, be i.i.d. with common d.f. F on R and S(F) a functional
of F. The influence function:

IFs p(x) = lim Sl =eh 46— e6,] — S[F]

measure the influence of a perturbation in direction x.
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About the Influence Function

Influence Function: Definition

Let Xi,...,X, be i.i.d. with common d.f. F on R and S(F) a functional
of F. The influence function:

1F5p(x) = tim L= ) 0] = SIF

measure the influence of a perturbation in direction x.

Empirical Version

For unknown S and finite size sample, F — F,, = % J’.’Zl 0x;s
e——1/(n—1):

IFS,F,l (X,) = lim

e—0

— (= 1)(S(Es) - S(Fn))

where F, _; is the empirical distribution on all sites but i.

S[(1 — e)F, + €dx,] — S[Fn]
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And for Phylogenies...

Definition
Let:
@ X = (Xj,...,X,) be the complete alignment,

@ X_; = X\X; all the sites but site i,
e (T,6;) the ML tree and associated parameters for X,

(T_l, GT ) the ML tree and associated parameters for X_;,

+(0:]X) = ZlogP

@ The statistic be:
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And for Phylogenies...

Definition
Let:
@ X = (Xj,...,X,) be the complete alignment,

@ X_; = X\X; all the sites but site i,
e (T,6;) the ML tree and associated parameters for X,

(T_l, GT ) the ML tree and associated parameters for X_;,

+(0:]X) = ZlogP

@ The statistic be:

The influence value of X; is then:

IFs ,(Xi) = (n = 1) (13(0:1X) — L= (0= (X))
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Influence Values

Interpretation
@ Positive value: enhanced support for the ML tree;

@ Negative value: weakened support for the ML tree;

@ Absolute value: strength of the support/disagreement;
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Influence Values

Interpretation
@ Positive value: enhanced support for the ML tree;

@ Negative value: weakened support for the ML tree;
@ Absolute value: strength of the support/disagreement;

@ Many sites with small positive values and a few sites with large
negative values.
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Influence Values

Interpretation
@ Positive value: enhanced support for the ML tree;

@ Negative value: weakened support for the ML tree;
@ Absolute value: strength of the support/disagreement;

@ Many sites with small positive values and a few sites with large
negative values.

Strategy towards greater stability
@ Focus on outliers: sites with IF(X;) < 0;
@ Rank them in increasing IF (X;);
@ Remove them one at the time until a stable tree is found.
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Data: Zygomycetes & Chytridiomycetes

@ "Lower mushrooms"
@ Biology: widely unknown!

@ Strong enough phylogenetic signal to correctly resolve the
topology.
@ 1026 sites, 158 OTUs, GTR model
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Information about sites
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Distance between trees
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Distance Between Trees

Distance between trees

penny-Hendy distance

=] =
M. Mariadassou (Université Paris Descartes) Phylogeny Stability

Oct. 08 26/38



Motivation and Goal

Motivation: Filter Data
Species source of error:
@ Poor taxon sampling;

@ Sequencing errors in a species;
@ Model misspecification;

@ Aberrant species, etc.
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Motivation and Goal

Motivation: Filter Data

Species source of error:
@ Poor taxon sampling;
@ Sequencing errors in a species;
@ Model misspecification;

@ Aberrant species, etc.

Goal
@ Quantify the influence of each species on the tree;
@ Detect rogue species;

@ |dentify weak nodes.
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Species Leverage Index (SLI)

Definition

Let:

X = (X,...,X®))" be the complete alignment,
X(=) = X\X® all the species but species i,

T the ML tree and associated parameters for X,
T the tree T after pruning species i,

—

T(=) the ML tree and associated
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Species Leverage Index (SLI)

Definition

Let:

X = (X,...,X®))" be the complete alignment,
X(=) = X\X® all the species but species i,

T the ML tree and associated parameters for X,
T the tree T after pruning species i,

—

T(=9) the ML tree and associated

The Species Leverage Index (SLI) of species i is:

—

SLI(i) = d(TC), T(=))

where d is any adapted distance .
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Definion
Let:
e X, X, T, T=), 7(=) defined as before,
@ A an internal node of 7,
The

of A is:

NLI(A) =) 1-=(A)
=l

_—

with 1—(A) being 1 if A is present in 7(=9) and 0 otherwise.
7(=10)




Nodes Leverage Index (NLI)

Definition

Let:
o X, X(-), 7, (-0, 7(-1) defined as before,
@ A an internal node of 7,

The Nodes Leverage Index (NLI) of A is:

NLI(A Z 14

/\

with HT/(;\( ) being 1 if A is present in T(~) and 0 otherwise.
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NLIs and SLlIs

Interpretation
SLI: e Low value: adding/removing the species from the dataset has
(almost) impact on the tree;
e High value: “rogue” species, adding/removing it greatly affects the
tree.
NLI: e High value: stable nodes, highly resilient to taxon sampling;
o Low value: weak nodes, highly sensitive to taxon sampling.
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NLIs and SLlIs

Interpretation

SLI: e Low value: adding/removing the species from the dataset has
(almost) impact on the tree;

e High value: “rogue” species, adding/removing it greatly affects the
tree.

NLI: e High value: stable nodes, highly resilient to taxon sampling;
o Low value: weak nodes, highly sensitive to taxon sampling.

Strategy towards greater stability
@ Focus on rogues species: species with high SLI;
@ Rank them in increasing SLI;
@ Remove them one at the time until a stable tree is found.
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Data: Placental Mammal Phylogeny

@ Mitochondrial genome of 68 mammals;
@ Amino Acids sequences;
@ Sequences are 3658 sites long;

@ Phylogeny published in Nikaido et al. in 2003.
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@ Data sampling;

e Outlier sites;

@ Rogue species.
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Summary

Three sources of uncertainties
@ Data sampling;

@ Oultlier sites;

@ Rogue species.

Three tools to detect them
@ How many sites to compute the likelihood;

@ Influence functions;

@ Species Leverage.
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Perspectives

@ Impact of the evolution model;

@ Bootstrap: global measure of uncertainty;

@ IF,SLI,NLI are local ones to pinpoint the sources of uncertainties;
@ Decompose the “black box” of bootstrap values;

@ Anything else | can think about.
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Computation of the likelihood on an example 2

Markovian properties give:
]P)(A7 C’ C) C) G?'x?y? Z’ W|T) =
P)P(ylx, t6)P(Aly, 0)P(Cly, 12)
P(z|x, 13)P(Clz, 13)
P(wlz, 7)P(Clw, 1a)P(G]w, 15)
which can be rewritten:
P(Xi|T) =

> P (Zﬂ”yx t6)P(Aly, )P <C|y,z2>)

X Z]P’z\x 13)P(Clz, 13)

Z]P (wlz, 17)P(Clw, t2)P(G|w, ts)))
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Computation of the likelihood on an example 3

@ The factorization structure mimics the tree (A,C)(C,(C,Q)) of
interest.

@ Felsenstein (1989) developed a recursive pruning algorithm to
quickly compute the likelihood a phylogeny, from the leaves to the
root.

» End of the example
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Rooted trees and exhaustive search

The GTR model is reversible:

P(x)P(ylx, t6) = P(y)P(x]y, t6)

No flow of time:we infer an unrooted tree.

But there still exists 3 x 5 x 7 x --- x (25 — 5) unrooted trees. Except for
very small dataset, exhaustive search is impossible.
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