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Phylogeny Goal

Basic Assumption:
Evolution process can be thought of as a Tree where:
→ Populations within species accumulate differences...
→ ... and transforms into new species (=branches).

Main Objectives:
Holy Grail: reconstruct the "Tree of Life";

Pragmatically: reconstruct the evolutionary history of a group of
species;

Useful for gene annotation, functional genomics, gene network
evolution study,...

Different from coalescence, species are not identical.
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Example of Mammal Phylogeny
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Reconstruction Goals and Problems

Two levels of reconstruction
Reconstruct the phylogeny:

Topology;
Branchs lengths.

Reconstrut states nodes (at internal nodes).

Problems
Genetic information available only for extant species, fossil
records are unreliable;
Reconstruction is a hard problem: the inferred tree might not be
the true one.

M. Mariadassou (Université Paris Descartes) Phylogeny Stability Oct. 08 5 / 38



A Wide Variety of Methods

Three Families of Methods:
Distance-based:

Agglomerative approachs: (U/W)PGMA, Neighbor-Joining;
Iterative topology search and tree building;

Parsimony-based: (un)corrected Maximum Parsimony;
Likelihood-based:

Maximum Likelihood (ML);
Bayesian Methods.

But recent focus on the last one:
Consensus for likelihood-based methods:

More computation-intensive but...
Outperform other methods.
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Data at Hand and Goal

Alignment Data
Alignment X = (Xij) of size s× n (number of species × sites);

Xij nucleotide j in taxon i valued in A = {A,C,G,T};

X(j) j-th line of X , vector of size n;

X(j) sequence of taxon j;

Xi i-th column of X , vector of size s;

Xi nucleotide pattern of site i.

Goal
Goal : Find the binary tree with s leaves (one for each species)
which represents the best explanation (=most probable) of the
data, the maximum-likelihood tree.
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Data Structure: An Example

Alignment example

Fin Whale M N E N L F A P F M
Harbor Seal M N E N L F A S F A
Blue Whale M N E N L F A P F M
Grey Seal M N E N L F A S F T
Horse M N E N L F A S F A
Chimpanzee M N E N L F A S F A
Bonobo M N E N L F A S F A
Gorilla M N E N L F A S F I
Bornean Orangutan M N E D L F T P F T

s = 9, n = 10
X24 = N;
4th site: X4 = (NNNNNNNND)′;
2nd taxon (Harbor Seal): X(2) = MNENLFASFA.
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Inference of the ML Tree

Data modelling:
Assume (Xi)n

i=1 i.i.d. (simplifying but essential assumption);

Choose generating evolution model M(T, θT);

Discrete topology T and continuous model parameter θT .

Likelihood Maximization
Compute likelihood: LM(T, θT) = P((Xi); M,T, θT);

For a given T, compute and store θ̂T maximizing L(T, θT);

Repeat for all T and retrieve (T̂, θ̂T̂).
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Evolution Model

Discrete space continuous time Markov chain
State space: A = {A,C,G,T} (or E = {amino-acids});

Generator (instantaneous rate matrix): R = ΠQ with

Q =


∗ αAC αAG αAT

− ∗ αCG αCT

− − ∗ αGT

− − − ∗

 Π =


πA 0 0 0
0 πC 0 0
0 0 πG 0
0 0 0 πT


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Computation of the likelihood on an example 1

For the following tree, for the given column:

P(Xi|T) =
∑

x

∑
y

∑
z

∑
w

P(A,C,C,C,G, x, y, z,w|T)

A C C C G

y

z

w

x

t6

t1 t2

t8

t7
t3

t5t4

L =
n∏

i=1

P(X1i, . . . ,Xsi|T) =
n∏

i=1

P(Xi|T)

Example ?
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The uncertainty issue

Inferred topology might not be the "true" topology;

Possible cause of uncertainties
Small sequence lengths (data sampling);

Low phylogenetic signal among the sites;

Incomplete taxa sampling;

Model misspecification;

"Aberrant" species;

Etc.
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Notations

Xi i.i.d. with shared distribution Q;

Empirical distribution Qn =
∑

i δXi of the nucleotides;

Support of Q made of all patterns with positive probability:

Ns ⊂ As Card(Ns) ≤ 4s

True and empirical mean log-likelihood of T:

`T = EQ[log P(X; T)] =
∑
x∈Ns

Q(x) log P(x; T)

`T
n = EQn [log P(X; T)] =

1
n

∑
i

log P(Xi; T)

where P(x; T) is the probability of pattern x under model T;
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`T as a scalar product

Replace Q and Qn, true and empirical pattern distribution, with:

θx = PQ(X = x)

θx
n = PQn(X = x) =

1
n

n∑
i=1

1{Xi=x}

θ = (θx)x∈Ns and θn = (θx
n)x∈Ns ;

Then, with log PT = (log P(x,T))x∈Ns .

`T = EQ[log P(X; T)] = θ. log PT

`T
n = EQn [log P(X; T)] = θn. log PT

`T − `T
n = (θ − θn). log PT
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Large Deviations I

`T − `T
n = (θ − θn). log PT

To control `T − `T
n , we need to control θ − θn, the difference

between the true and the empirical pattern distribution;

Probability of {‖θ − θn‖ > ε} decreases exponentially towards 0;

At what rate?

Using large deviation tools, we obtain:

log P(‖θ − θn‖ > ε)
n

≤ log |Ns|
n

+
log 2

n
+ max

x∈Ns

−ε2

θx(1− θx + ε)
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Large Deviations II

This leads to:

log P
(
|`T − `T

n | ≥ ε
)

n
≤ log |Ns|

n
+

log 2
n

+ max
x∈Ns

−ε̃2

θx(1− θx + ε̃)

Where ε̃ =
ε

|Ns|‖ log PT‖
.

Remarks:
For a given confidence level, we know how n evolves with s;

Sharp bound for small Ns ⇒ accurate estimation of |Ns| is crucial;

For simple models (JC69,K2P), patterns (e.g. YYRR) can be
merged⇒ smaller Ns.

M. Mariadassou (Université Paris Descartes) Phylogeny Stability Oct. 08 16 / 38



Large Deviations II

This leads to:

log P
(
|`T − `T

n | ≥ ε
)

n
≤ log |Ns|

n
+

log 2
n

+ max
x∈Ns

−ε̃2

θx(1− θx + ε̃)

Where ε̃ =
ε

|Ns|‖ log PT‖
.

Remarks:
For a given confidence level, we know how n evolves with s;

Sharp bound for small Ns ⇒ accurate estimation of |Ns| is crucial;

For simple models (JC69,K2P), patterns (e.g. YYRR) can be
merged⇒ smaller Ns.

M. Mariadassou (Université Paris Descartes) Phylogeny Stability Oct. 08 16 / 38



Inversions events

ML methods based on the model ranking induced by their
likelihood score;

But inference done on ranking induced by empirical likelihood
score;

Inversion events between models T and T ′ can happen;

When comparing two models T and T ′, the true ranking may be
different from the empirical one;

How often does such an event happens?

How does its probability P(`T
n − `T′

n < 0|`T − `T′ > 0) decreases
when available information increases?
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Concentration results

Still using large deviation tools, we obtain:

Proposition

Assume that model T is better than model T ′ (`T > `T′), then the
probability that T ′ is better than T for our sample is such that:

log P(`T
n − `T′

n < 0)
n

≤ log |Ns|
n

+ max
x∈Ns

−ε2

θx(1− θx + ε)

where ε = `T−`T′

|Ns|‖ log PT−log PT′‖ and θ = (PQ(X = x))x∈Ns .

Remarks:
Expected result: inversion probability decreases with `T − `T′ ;

Patterns with same likelihood under T and T ′ can be removed
from Ns.
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Motivation and Goal

Motivation: Filter Data
Sites source of errors:

Sequencing errors;

Alignment errors;

Presence of an atypical DNA segment;

. . .

Goal
Quantify the influence of each site on the tree;

Detect outlier sites;

Infer a robust tree.

M. Mariadassou (Université Paris Descartes) Phylogeny Stability Oct. 08 19 / 38



Motivation and Goal

Motivation: Filter Data
Sites source of errors:

Sequencing errors;

Alignment errors;

Presence of an atypical DNA segment;

. . .

Goal
Quantify the influence of each site on the tree;

Detect outlier sites;

Infer a robust tree.

M. Mariadassou (Université Paris Descartes) Phylogeny Stability Oct. 08 19 / 38



About the Influence Function

Influence Function: Definition
Let X1, . . . ,Xn be i.i.d. with common d.f. F on Rd and S(F) a functional
of F. The influence function:

IFS,F(x) = lim
ε→0

S[(1− ε)F + εδx]− S[F]
ε

measure the influence of a perturbation in direction x.

Empirical Version

For unknown S and finite size sample, F → Fn = 1
n

∑n
j=1 δXj ,

ε→ −1/(n− 1):
IFS,Fn(Xi) = lim

ε→0

S[(1− ε)Fn + εδXi ]− S[Fn]
ε

= (n− 1)
(
S(Fn)− S(Fn,−i)

)
where Fn,−i is the empirical distribution on all sites but i.
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And for Phylogenies...

Definition
Let:

X = (X1, . . . ,Xn) be the complete alignment,
X−i = X\Xi all the sites but site i,
(T̂, θ̂T̂) the ML tree and associated parameters for X,

(T̂−i, θ̂dT−i
) the ML tree and associated parameters for X−i,

The statistic be:
lT̂(θ̂T̂ |X) =

1
n

n∑
i=1

log P(Xi|T̂, θ̂T̂)

The influence value of Xi is then:

IFS,Fn(Xi) = (n− 1)
(
lT̂(θ̂T̂ |X)− ldT−i

(θ̂dT−i
|X−i)

)
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Influence Values

Interpretation
Positive value: enhanced support for the ML tree;

Negative value: weakened support for the ML tree;

Absolute value: strength of the support/disagreement;

Many sites with small positive values and a few sites with large
negative values.

Strategy towards greater stability
Focus on outliers: sites with IF(Xi) < 0;
Rank them in increasing IF(Xi);
Remove them one at the time until a stable tree is found.
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Data: Zygomycetes & Chytridiomycetes

"Lower mushrooms"
Biology: widely unknown!
Strong enough phylogenetic signal to correctly resolve the
topology.
1026 sites, 158 OTUs, GTR model
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Information about sites
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Distance between trees

0 20 18 18 18 18 18 18 18 20
20 0 2 2 2 2 2 2 2 2
18 2 0 0 0 0 0 0 0 2
18 2 0 0 0 0 0 0 0 2
18 2 0 0 0 0 0 0 0 2
18 2 0 0 0 0 0 0 0 2
18 2 0 0 0 0 0 0 0 2
18 2 0 0 0 0 0 0 0 2
18 2 0 0 0 0 0 0 0 2
20 2 2 2 2 2 2 2 2 0

Ti: trees constructed without the i most influent sites.
Dij: Robinson-Foulds distance between Ti and Tj
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Distance Between Trees
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Motivation and Goal

Motivation: Filter Data
Species source of error:

Poor taxon sampling;

Sequencing errors in a species;

Model misspecification;

Aberrant species, etc.

Goal
Quantify the influence of each species on the tree;

Detect rogue species;

Identify weak nodes.
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Species Leverage Index (SLI)

Definition
Let:

X =
(
X(1), . . . ,X(s)

)′ be the complete alignment,

X(−i) = X\X(i) all the species but species i,
T̂ the ML tree and associated parameters for X,
T̂(−i) the tree T̂ after pruning species i,

T̂(−i) the ML tree and associated

The Species Leverage Index (SLI) of species i is:

SLI(i) = d(T̂(−i), T̂(−i))

where d is any adapted distance .
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Nodes Leverage Index (NLI)

Definition
Let:

X, X(−i), T̂, T̂(−i), T̂(−i) defined as before,
A an internal node of T̂,

The Nodes Leverage Index (NLI) of A is:

NLI(A) =
n∑

i=1

1
T̂(−i)

(A)

with 1
T̂(−i)

(A) being 1 if A is present in T̂(−i) and 0 otherwise.
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NLIs and SLIs

Interpretation
SLI: Low value: adding/removing the species from the dataset has

(almost) impact on the tree;
High value: “rogue” species, adding/removing it greatly affects the
tree.

NLI: High value: stable nodes, highly resilient to taxon sampling;
Low value: weak nodes, highly sensitive to taxon sampling.

Strategy towards greater stability
Focus on rogues species: species with high SLI;
Rank them in increasing SLI;
Remove them one at the time until a stable tree is found.
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Data: Placental Mammal Phylogeny

Mitochondrial genome of 68 mammals;

Amino Acids sequences;

Sequences are 3658 sites long;

Phylogeny published in Nikaido et al. in 2003.
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SLI

Species Leverage Index (SLI)
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Guinea Pig
With guinea pig Without guinea pig
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Summary

Three sources of uncertainties
Data sampling;

Outlier sites;

Rogue species.

Three tools to detect them
How many sites to compute the likelihood;

Influence functions;

Species Leverage.
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Perspectives

Impact of the evolution model;

Bootstrap: global measure of uncertainty;

IF,SLI,NLI are local ones to pinpoint the sources of uncertainties;

Decompose the “black box” of bootstrap values;

Anything else I can think about.
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Computation of the likelihood on an example 2

Markovian properties give:

P(A,C,C,C,G, x, y, z,w|T) =
P(x)P(y|x, t6)P(A|y, t1)P(C|y, t2)

P(z|x, t8)P(C|z, t3)
P(w|z, t7)P(C|w, t4)P(G|w, t5)

which can be rewritten:

P(Xi|T) =∑
x

P(x)

(∑
y

P(y|x, t6)P(A|y, t1)P(C|y, t2)

)

×

(∑
z

P(z|x, t8)P(C|z, t3)

(
∑

w

P(w|z, t7)P(C|w, t4)P(G|w, t5))

)
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Computation of the likelihood on an example 3

The factorization structure mimics the tree (A,C)(C,(C,G)) of
interest.

Felsenstein (1989) developed a recursive pruning algorithm to
quickly compute the likelihood a phylogeny, from the leaves to the
root.

End of the example
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Rooted trees and exhaustive search

The GTR model is reversible:

P(x)P(y|x, t6) = P(y)P(x|y, t6)

No flow of time:we infer an unrooted tree.

But there still exists 3× 5× 7× · · · × (2s− 5) unrooted trees. Except for
very small dataset, exhaustive search is impossible.
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