Influence of Sites and Species on Phylogenetic Stability

M. Mariadassou A. Bar-Hen H. Kishino

Laboratoire MAP5 Université Paris Descartes

24 June 2009 LBBE Lab Seminar

Molecular Phylogeny

Main Goal:

Use biological macromolecules (DNA, proteins) to unravel the evolutionary history of a set of species

Basic Ideas:

- Closely related species: highly similar molecules,
- Distantly related species: not so similar molecules,
- Use similarity information to reconstruct probable evolution,

Results

- Evolution is assumed to be tree-like,
- Results are displayed as a phylogenetic tree.

Molecular Phylogeny

Main Goal:

Use biological macromolecules (DNA, proteins) to unravel the evolutionary history of a set of species

Basic Ideas:

- Closely related species: highly similar molecules,
- Distantly related species: not so similar molecules,
- Use similarity information to reconstruct probable evolution,

Results

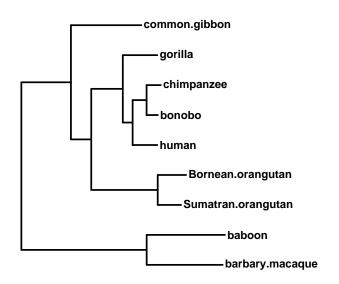
- Evolution is assumed to be tree-like,
- Results are displayed as a phylogenetic tree.

Molecular Phylogeny

Main Goal:

Use biological macromolecules (DNA, proteins) to unravel the evolutionary history of a set of species

Basic Ideas:


- Closely related species: highly similar molecules,
- Distantly related species: not so similar molecules,
- Use similarity information to reconstruct probable evolution,

Results:

- Evolution is assumed to be tree-like,
- Results are displayed as a phylogenetic tree.

Example of A Phylogenetic Tree

Reconstructions and Limits

Two levels of reconstruction:

- Reconstruct the phylogeny:
 - Topology;
 - Branchs lengths.

Reconstruct ancestral sequences.

Issues

- Evolution is a unique event,
- Genetic information available only for extant species,
- Almost no direct observations or information about the evolutionary process.

Reconstructions and Limits

Two levels of reconstruction:

- Reconstruct the phylogeny:
 - Topology;
 - Branchs lengths.

Reconstruct ancestral sequences.

Issues:

- Evolution is a unique event,
- Genetic information available only for extant species,
- Almost no direct observations or information about the evolutionary process.

Data Structure

Collection: Select gene/protein shared by all species, sequence it and align the sequences.

Example:

• Alignment $\mathcal{X} = (X_{ij})$ of size $s \times n$ (6 species \times 10 sites)

```
Fin Whale M N E \mathbf{N} L F A P F Blue Whale M N E \mathbf{N} L F A P F Chimpanzee M N E \mathbf{N} L F A S F Bonobo M N E \mathbf{N} L F A S F Gorilla M N E \mathbf{N} L F A S F Bornean Orangutan M N E \mathbf{D} L F T P F
```

- $\mathcal{X}_{24} = N$,
- 4th site: $\mathbf{X}_4 = (\mathbf{NNNNND})'$,
- 2^{nd} species (Harbor Seal): $\mathbf{X}^{(2)} = MNENLFAPFM$.

Several inference methods

Scan all trees and select the one which optimizes a given criteria:

- Maximum Parsimony: minimizes the number of changes needed to explain the current data;
- Maximum Likelihood: maximizes the likelihood of the data;
- Bayesian Analysis: maximizes the posterior probability of the data;
- etc.

Inference Method

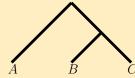
Likelihood Based

- Assume (X_i) *i.i.d.*;
- Choose an evolution model M (e.g. GTR+I+Γ4);
- Discrete topology T, continuous branch lengths b_T and model parameters θ_M ;
- Retrieve $(\hat{T}, \hat{b}_{\hat{T}}, \widehat{\theta}_M)$ maximizing $\mathbb{P}((\mathbf{X}_i); M, \theta_M, T, b_T)$.

Inference Method

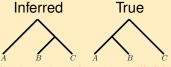
Likelihood Based

- Assume (X_i) i.i.d.;
- Choose an evolution model M (e.g. GTR+I+ Γ 4);
- Discrete topology T, continuous branch lengths b_T and model parameters θ_M ;
- Retrieve $(\hat{T}, \hat{b}_{\hat{T}}, \widehat{\theta}_M)$ maximizing $\mathbb{P}((\mathbf{X}_i); M, \theta_M, T, b_T)$.


General Principle:

Alignment

Α	C	C	T	T
В	G	G	A	A
С	G	G	A	C


Phylogenetic tree

End of The Story?

Inference Problems:

Compare inferred tree to true tree to assess how good it is,

But the true tree is not available!

Confidence Issue:

- How confident are we on the inferred tree ?
- Which parts of the tree are reliable/not reliable?

End of The Story?

Inference Problems:

Compare inferred tree to true tree to assess how good it is,
Inferred True

?

But the true tree is not available!

Confidence Issue:

- How confident are we on the inferred tree ?
- Which parts of the tree are reliable/not reliable?

End of The Story?

Inference Problems:

Compare inferred tree to true tree to assess how good it is,
Inferred True

?

But the true tree is not available!

Confidence Issue:

- How confident are we on the inferred tree ?
- Which parts of the tree are reliable/not reliable?

Confidence or Robustness?

Confidence or Robustness?

Confidence: Another (independent) data set gives (roughly) the same inferred tree:

Robustness: Tweaking the (original) data set gives (roughly) the same inferred tree.

Robustness

- When no independent data set is available, we can only check robustness, not confidence;
- The inferred tree might be far from the true tree, as long it is consistently so, we are happy.

Confidence or Robustness?

Confidence or Robustness?

Confidence: Another (independent) data set gives (roughly) the same inferred tree:

Robustness: Tweaking the (original) data set gives (roughly) the same inferred tree.

Robustness

- When no independent data set is available, we can only check robustness, not confidence;
- The inferred tree might be far from the true tree, as long it is consistently so, we are happy.

Bootstrap Strong Points:

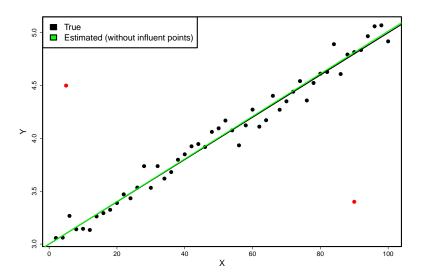
- Many potential causes for uncertainties:
 - Finite sequence lengths (sampling errors);
 - Poor alignment quality (influent sites);
 - Poor taxon sampling (rogue taxa);
 - ...
- Global measure of uncertainty.

- Global measure of uncertainty;
- Unable to breakdown the uncertainty;
- Unable to pinpoint local sources of uncertainty;
- Several other ways to tweak the data.

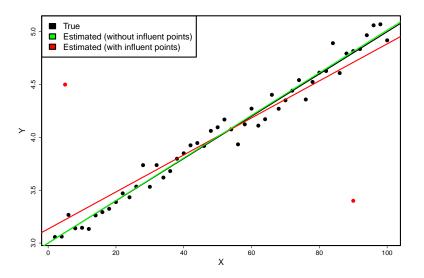
Bootstrap Strong Points:

- Many potential causes for uncertainties:
 - Finite sequence lengths (sampling errors);
 - Poor alignment quality (influent sites);
 - Poor taxon sampling (rogue taxa);
 - ...
- Global measure of uncertainty.

- Global measure of uncertainty;
- Unable to breakdown the uncertainty;
- Unable to pinpoint local sources of uncertainty;
- Several other ways to tweak the data.


Bootstrap Strong Points:

- Many potential causes for uncertainties:
 - Finite sequence lengths (sampling errors);
 - Poor alignment quality (influent sites);
 - Poor taxon sampling (rogue taxa);
 -
- Global measure of uncertainty.


- Global measure of uncertainty;
- Unable to breakdown the uncertainty;
- Unable to pinpoint local sources of uncertainty;
- Several other ways to tweak the data.

A Simple Example: Linear Regression

A Simple Example: Linear Regression

Outlier Sites: Motivation and Goal

Motivation: Filter Data

Source of errors for sites:

- Sequencing errors;
- Alignment errors;
- Presence of an atypical DNA segment;
- ...

Goal

- Quantify the influence of each site on the tree;
- Detect outlier sites:
- Infer a robust tree.

Outlier Sites: Motivation and Goal

Motivation: Filter Data

Source of errors for sites:

- Sequencing errors;
- Alignment errors;
- Presence of an atypical DNA segment;
- ...

Goal

- Quantify the influence of each site on the tree;
- Detect outlier sites;
- Infer a robust tree.

About the Influence Function

Influence Function: Definition

Let X_1, \ldots, X_n be *i.i.d.* with common d.f. F on \mathbb{R}^d and S(F) a functional of F. The influence function:

$$IF_{S,F}(x) = \lim_{\varepsilon \to 0} \frac{S[(1-\varepsilon)F + \varepsilon \delta_x] - S[F]}{\varepsilon}$$

measure the influence of a perturbation in direction x.

Empirical Version

For unknown S and finite size sample, $F \to F_n = \frac{1}{n} \sum_{j=1}^n \delta_{X_j} \varepsilon \to -1/(n-1)$: $IF_{S,F_n}(X_i) = \lim_{\varepsilon \to 0} \frac{S[(1-\varepsilon)F_n + \varepsilon \delta_{X_i}] - S[F_n]}{\varepsilon}$ $= (n-1) \left(S(F_n) - S(F_{n,-i})\right)$

where $F_{n,-i}$ is the empirical distribution on all sites but i.

About the Influence Function

Influence Function: Definition

Let X_1, \ldots, X_n be *i.i.d.* with common d.f. F on \mathbb{R}^d and S(F) a functional of F. The influence function:

$$IF_{S,F}(x) = \lim_{\varepsilon \to 0} \frac{S[(1-\varepsilon)F + \varepsilon \delta_x] - S[F]}{\varepsilon}$$

measure the influence of a perturbation in direction x.

Empirical Version

For unknown S and finite size sample, $F \to F_n = \frac{1}{n} \sum_{j=1}^n \delta_{X_j}$, $\varepsilon \to -1/(n-1)$:

$$IF_{S,F_n}(X_i) = \lim_{\varepsilon \to 0} \frac{S[(1-\varepsilon)F_n + \varepsilon \delta_{X_i}] - S[F_n]}{\varepsilon}$$
$$= (n-1) \left(S(F_n) - S(F_{n,-i}) \right)$$

where $F_{n,-i}$ is the empirical distribution on all sites but i.

And for Phylogenies...

Definition

Let:

- $\mathbf{X} = (\mathbf{X}_1, \dots, \mathbf{X}_n)$ be the complete alignment,
- $\mathbf{X}_{-i} = \mathbf{X} \backslash \mathbf{X}_i$ all the sites but site i,
- $(\hat{T}, \hat{b}_{\hat{T}}, \hat{\theta}_M)$ the ML tree and associated parameters for **X**,
- ullet $(\widehat{T_{-i}}, \hat{b}_{\widehat{T_{-i}}}, \hat{ heta}_M)$ the ML tree and associated parameters for \mathbf{X}_{-i} ,
- The statistic be:

$$l_{\hat{T}}(\mathbf{X}) = \frac{1}{n} \sum_{i=1}^{n} \log \mathbb{P}(\mathbf{X}_i | M, \hat{\theta}_M, \hat{T}, \hat{b}_{\hat{T}},)$$

The influence value of X_i is then:

$$IF_{S,F_n}(\mathbf{X}_i) = (n-1)\left(l_{\hat{T}}(\mathbf{X}) - l_{\widehat{T_{-i}}}(\mathbf{X}_{-i})\right)$$

And for Phylogenies...

Definition

Let:

- $\mathbf{X} = (\mathbf{X}_1, \dots, \mathbf{X}_n)$ be the complete alignment,
- $\mathbf{X}_{-i} = \mathbf{X} \backslash \mathbf{X}_i$ all the sites but site i,
- \bullet $(\hat{T}, \hat{b}_{\hat{T}}, \hat{\theta}_M)$ the ML tree and associated parameters for X,
- ullet $(\widehat{T_{-i}}, \hat{b}_{\widehat{T_{-i}}}, \hat{ heta}_M)$ the ML tree and associated parameters for \mathbf{X}_{-i} ,
- The statistic be:

$$l_{\hat{T}}(\mathbf{X}) = \frac{1}{n} \sum_{i=1}^{n} \log \mathbb{P}(\mathbf{X}_i | M, \hat{\theta}_M, \hat{T}, \hat{b}_{\hat{T}},)$$

The influence value of X_i is then:

$$IF_{S,F_n}(\mathbf{X}_i) = (n-1) \left(l_{\widehat{T}}(\mathbf{X}) - l_{\widehat{T}_{-i}}(\mathbf{X}_{-i})\right)$$

Influence Values

Interpretation

- Positive value: enhanced support for the ML tree;
- Negative value: weakened support for the ML tree;
- Absolute value: strength of the support/disagreement;
- Many sites with small positive values and a few sites with large negative values.

Strategy towards greater stability

- Focus on outliers: sites with $IF(\mathbf{X}_i) < 0$;
- Rank them in increasing $IF(\mathbf{X}_i)$;
- Remove them one at the time until a stable tree is found.

Influence Values

Interpretation

- Positive value: enhanced support for the ML tree;
- Negative value: weakened support for the ML tree;
- Absolute value: strength of the support/disagreement;
- Many sites with small positive values and a few sites with large negative values.

Strategy towards greater stability

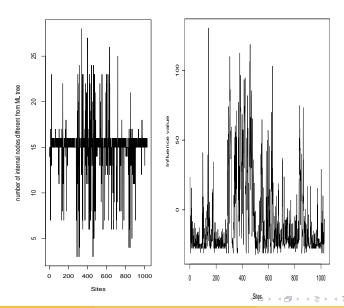
- Focus on outliers: sites with $IF(\mathbf{X}_i) < 0$;
- Rank them in increasing $IF(\mathbf{X}_i)$;
- Remove them one at the time until a stable tree is found.

Influence Values

Interpretation

- Positive value: enhanced support for the ML tree;
- Negative value: weakened support for the ML tree;
- Absolute value: strength of the support/disagreement;
- Many sites with small positive values and a few sites with large negative values.

Strategy towards greater stability

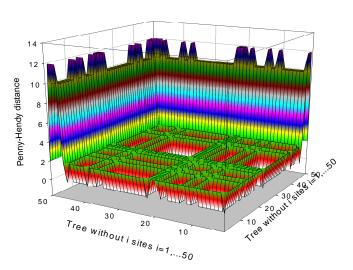

- Focus on outliers: sites with $IF(\mathbf{X}_i) < 0$;
- Rank them in increasing $IF(\mathbf{X}_i)$;
- Remove them one at the time until a stable tree is found.

Data: Zygomycetes & Chytridiomycetes

- "Lower mushrooms";
- Biology: widely unknown!
- Strong enough phylogenetic signal to correctly resolve the topology;
- 1026 sites, 158 OTUs, GTR model.

Information about sites

Distance between trees

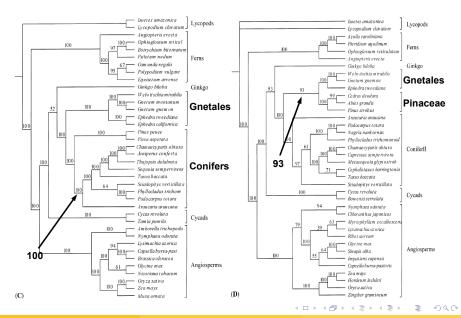

0	20	18	18	18	18	18	18	18	20
20	0	2	2	2	2	2	2	2	2
18	2	0	0	0	0	0	0	0	2
18	2	0	0	0	0	0	0	0	2
18	2	0	0	0	0	0	0	0	2
18	2	0	0	0	0	0	0	0	2
18	2	0	0	0	0	0	0	0	2
18	2	0	0	0	0	0	0	0	2
18	2	0	0	0	0	0	0	0	2
20	2	2	2	2	2	2	2	2	0

 T_i : trees constructed without the i most influent sites.

 D_{ij} : Robinson-Foulds distance between T_i and T_j

Distance Between Trees

Distance between trees


Bootstrap Strong Points:

- Many potential causes for uncertainty:
 - Finite sequence lengths,
 - Poor alignment quality (outlier sites),
 - Poor taxon sampling (rogue taxa),
 -
- Global measure of uncertainty,

- Global measure of uncertainty,
- Unable to breakdown the uncertainty,
- Unable to pinpoint local sources of uncertainty,
- Several other ways to tweak the data.

Seed Plant Phylogeny (Ridyn & al. 2002)

Taxon Influence Index: Motivation and Goal

Taxon Influence Index (TII)

- Goal: Study the robustness of the tree with respect to the species,
- Motivation: Thanks to strange evolutionary features not taken into account by the inference method, some species may exert a strong pull toward a biased estimated phylogeny,
- Method:
 - Infer the phylogeny *T* with the whole taxa sample;
 - Remove species one at the time and infer a new tree $T^{(-i)}$ on the smaller species set;
 - Quantify difference between T and $T^{(-i)}$.

Taxon Influence Index: Motivation and Goal

Taxon Influence Index (TII)

- Goal: Study the robustness of the tree with respect to the species,
- Motivation: Thanks to strange evolutionary features not taken into account by the inference method, some species may exert a strong pull toward a biased estimated phylogeny,
- Method:
 - Infer the phylogeny *T* with the whole taxa sample;
 - Remove species one at the time and infer a new tree $T^{(-i)}$ on the smaller species set;
 - Quantify difference between T and $T^{(-i)}$.

Taxon Influence Index: Motivation and Goal

Taxon Influence Index (TII)

- Goal: Study the robustness of the tree with respect to the species,
- Motivation: Thanks to strange evolutionary features not taken into account by the inference method, some species may exert a strong pull toward a biased estimated phylogeny,
- Method:
 - Infer the phylogeny *T* with the whole taxa sample;
 - Remove species one at the time and infer a new tree $T^{(-i)}$ on the smaller species set;
 - Quantify difference between T and $T^{(-i)}$.

Taxon Influence Index (TII)

Definition

Let:

- $\mathbf{X} = (\mathbf{X}^{(1)}, \dots, \mathbf{X}^{(s)})'$ be the complete alignment,
- $\mathbf{X}^{(-i)} = \mathbf{X} \setminus \mathbf{X}^{(i)}$ all the species but species i,
- \hat{T} the ML tree and associated parameters for X,
- $\widehat{T}^{(-i)}$ the tree \widehat{T} after pruning species i,
- \bullet $T^{(-i)}$ the ML tree and associated

The Taxon Influence Index (TII) of species *i* is:

$$TII(i) = d(\widehat{T}^{(-i)}, \widehat{T^{(-i)}})$$

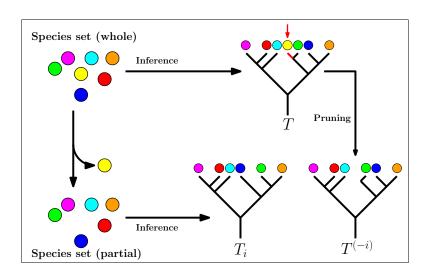
where d is any adapted distance.

Taxon Influence Index (TII)

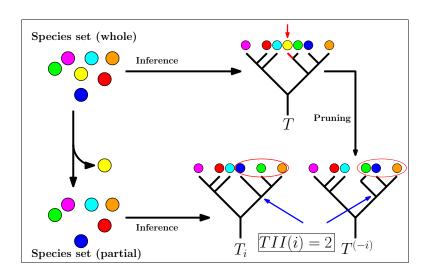
Definition

Let:

- $\mathbf{X} = (\mathbf{X}^{(1)}, \dots, \mathbf{X}^{(s)})'$ be the complete alignment,
- $\mathbf{X}^{(-i)} = \mathbf{X} \setminus \mathbf{X}^{(i)}$ all the species but species i,
- \hat{T} the ML tree and associated parameters for X,
- $\widehat{T}^{(-i)}$ the tree \widehat{T} after pruning species i,
- \bullet $T^{(-i)}$ the ML tree and associated


The Taxon Influence Index (TII) of species *i* is:

$$TII(i) = d(\widehat{T}^{(-i)}, \widehat{T^{(-i)}})$$


where d is any adapted distance.

Method

Method

Branch Stability scores (BS scores)

Definition

Branch Stability score (BS score) of *b*: number of inferred trees in which the node is retrieved,

$$BS(b) = \sum_{i=1}^{s} \mathbb{1}_{\widehat{T^{(-i)}}}(b)$$

Problems

- The species sets are different between \widehat{T} , $\widehat{T}^{(-i)}$ and $\widehat{T}^{(-i)}$;
- The species sets are different between the $T^{(-i)}$ s;
- Some branches naturally disappear when a species is pruned;
- Find a convenient branch mapping from \widehat{T} to $\widehat{T}^{(-i)}$ before comparing $\widehat{T}^{(-i)}$ and $\widehat{T}^{(-i)}$.

Branch Stability scores (BS scores)

Definition

Branch Stability score (BS score) of *b*: number of inferred trees in which the node is retrieved,

$$BS(b) = \sum_{i=1}^{s} \mathbb{1}_{\widehat{T^{(-i)}}}(b)$$

Problems

- The species sets are different between \widehat{T} , $\widehat{T}^{(-i)}$ and $\widehat{T}^{(-i)}$;
- The species sets are different between the $T^{(-i)}$ s;
- Some branches naturally disappear when a species is pruned;
- Find a convenient branch mapping from \widehat{T} to $\widehat{T}^{(-i)}$ before comparing $\widehat{T}^{(-i)}$ and $\widehat{T}^{(-i)}$.

TII and BS scores

Interpretation

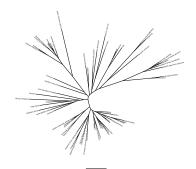
- TII: Low value: adding/removing the taxon from the data set has (almost) impact on the tree;
 - High value: Influential taxon, adding/removing it greatly affects the tree, may be a rogue taxon.
- BS: High value: stable branch, highly resilient to taxon sampling;
 - Low value: weak branch, highly sensitive to taxon sampling.

Strategy towards robustness

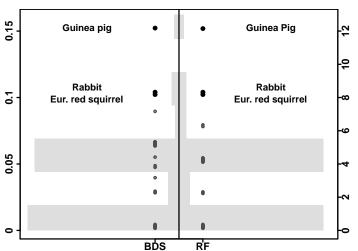
- Focus on rogue taxa: taxa with high TII;
- Rank them in increasing TII;
- Remove them one at the time until a stable tree is found.

TII and BS scores

Interpretation

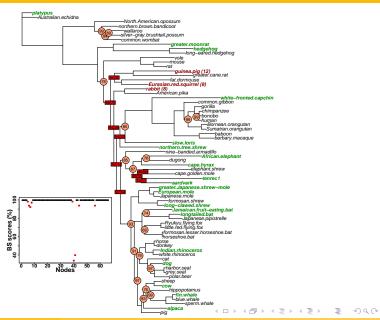

- TII: Low value: adding/removing the taxon from the data set has (almost) impact on the tree;
 - High value: Influential taxon, adding/removing it greatly affects the tree, may be a rogue taxon.
- BS: High value: stable branch, highly resilient to taxon sampling;
 - Low value: weak branch, highly sensitive to taxon sampling.

Strategy towards robustness

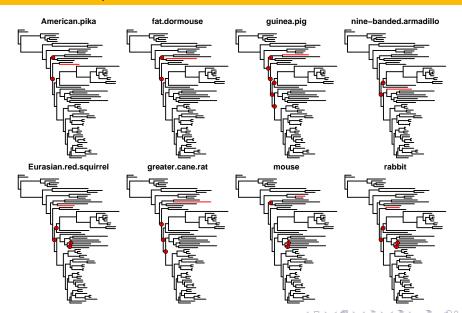

- Focus on rogue taxa: taxa with high TII;
- Rank them in increasing TII;
- Remove them one at the time until a stable tree is found.

Data: Placental Mammal Phylogeny

- Mitochondrial genome of 68 mammals;
- Amino Acids sequences;
- Sequences are 3658 AA long;
- MtMam + I + Γ 4 model;
- Phylogeny published in Nikaido et al. in 2003.



Taxon Influence Index



BSD: Branch-score distance / RF: Robinson-Foulds distance

Complete Phylogeny

Influential Species

Summary

Two local sources of instability

- Outlier sites;
- Rogue species.

Two tools to detect them

- Influence functions;
- Taxon Influence Index.

Summary

Two local sources of instability

- Outlier sites;
- Rogue species.

Two tools to detect them

- Influence functions;
- Taxon Influence Index.

Conclusion and Perspectives

Conclusions

- Bootstrap: global measure of uncertainty,
- TII, BS and IF scores and are local ones to pinpoint the sources of uncertainties,

Perspectives

- Impact of the evolution model / inference method;
- Statical properties of the indices.

Further Reading

A. Bar-Hen, M. Mariadassou, M.-A. Poursat and P. Vandenkoornhuyse. Influence function for robust phylogenetic reconstructions. *Mol. Biol. Evol.* 25:869–873, 2008

M. Mariadassou, A. Bar-Hen and H. Kishino. Taxon influence: assessing taxon-induced incongruities in phylogenetic inference submitted to *Syst. Biol.*