Influence Function for Robust Phylogenetic Reconstruction

Mahendra Mariadassou

Unité MIG INRA Jouy-en-Josas

JOBIM 2011 Institut Pasteur

Goal of Phylogenetic Reconstruction

Applications in Many Domains

Including but not limited to:

Studies of an Evolutionary Group:

- Estimate Time to Most Recent Common Ancestor (TMRCA);
- Find genes under positive/purifying selection;
- Identifying Horizontal Gene Transfer;
- Testing evolutionary hypothesis.

Systematics:

- Reconstruct Tree of X, phylogeny of all living X;
- DNA barcoding: easily identify the species of a new organism;
- Natural way to measure biodiversity.

Most of these applications require "good" trees.

Applications in Many Domains

Including but not limited to:

Studies of an Evolutionary Group:

- Estimate Time to Most Recent Common Ancestor (TMRCA);
- Find genes under positive/purifying selection;
- Identifying Horizontal Gene Transfer;
- Testing evolutionary hypothesis.

Systematics:

- Reconstruct Tree of X, phylogeny of all living X;
- DNA barcoding: easily identify the species of a new organism;
- Natural way to measure biodiversity.

Most of these applications require "good" trees.

Applications in Many Domains

Including but not limited to:

Studies of an Evolutionary Group:

- Estimate Time to Most Recent Common Ancestor (TMRCA);
- Find genes under positive/purifying selection;
- Identifying Horizontal Gene Transfer;
- Testing evolutionary hypothesis.

Systematics:

- Reconstruct Tree of X, phylogeny of all living X;
- DNA barcoding: easily identify the species of a new organism;
- Natural way to measure biodiversity.

Most of these applications require "good" trees.

Three main families:

Distance based: Neighbor-Joining (NJ),

Parsimony based: Maximum Parcimony(MP),

Likelihood based: Maximum Likelihood(ML), Bayesian Inference (BI).

Validating the Tree

Inference Problems:

Compare inferred tree to true tree to assess how good it is,

Confidence Issue:

- How confident are we on the inferred tree ?
- Which parts of the tree are reliable/not reliable ?
- How robust is the tree to small changes in the data and outliers ?

Validating the Tree

Inference Problems:

Compare inferred tree to true tree to assess how good it is,

But the true tree is not available!

Confidence Issue:

- How confident are we on the inferred tree ?
- Which parts of the tree are reliable/not reliable ?
- How robust is the tree to small changes in the data and outliers ?

Validating the Tree

Inference Problems:

Compare inferred tree to true tree to assess how good it is,

Confidence Issue:

- How confident are we on the inferred tree ?
- Which parts of the tree are reliable/not reliable ?
- How robust is the tree to small changes in the data and outliers ?

Bootstrap Values: the Theory

Original Dataset: Alignment **Phylogenetic tree**

66

Potential Causes for Uncertainty:

- Finite sequence lengths (sampling errors);
- Poor alignment quality (influent sites);
- Poor taxon sampling (rogue taxa);
- Model misspecification,

Different Tools to Assess Them:

- Bootstrap: deals with global sources of uncertainty;
- Unable to pinpoint local sources of uncertainty;

Need for other indexes to detect outliers

Ο...

Bootstrap Values: A Robustness Index ?

Potential Causes for Uncertainty:

- Finite sequence lengths (sampling errors);
- Poor alignment quality (influent sites);
- Poor taxon sampling (rogue taxa);
- Model misspecification,

Different Tools to Assess Them:

- Bootstrap: deals with global sources of uncertainty;
- Unable to pinpoint local sources of uncertainty;
- Need for other indexes to detect outliers

Ο...

Outlier Sites: Motivation and Goal

Motivation: Filter Data

Identifying/filter out outliers corresponding to:

- Sequencing errors;
- Alignment errors;
- Presence of an atypical DNA segment;

Procedure

Ο . . .

- Quantify influence of site i by
 - Removing site *i* from alignment;
 - Computing new tree T⁻ⁱ from smaller (jackknife) alignment;
 - Comparing new tree to original tree;
- Compute phylogeny from "not too influent sites".

Outlier Sites: Motivation and Goal

Motivation: Filter Data

Identifying/filter out outliers corresponding to:

- Sequencing errors;
- Alignment errors;
- Presence of an atypical DNA segment;

Procedure

Ο . . .

- Quantify influence of site i by
 - Removing site *i* from alignment;
 - Computing new tree T^{-i} from smaller (jackknife) alignment;
 - Comparing new tree to original tree;
- Compute phylogeny from "not too influent sites".

For Phylogenies...

Definition

• For alignment of size *n*, the influence value of site *i* is:

$$IF(\text{site } i) = (n-1) \Big(\frac{LogLik(T^{-i})}{n-1} - \frac{LogLik(T)}{n} \Big)$$

- Difference between support of alignments for their ML trees;
- Negative / Positive value: enhanced / weakened support (when adding the site);
- Expect most sites with small negative values and a few with large positive values.

Strategy towards greater stability

- Focus on outliers: sites with IF(site i) > 0;
- Rank them in decreasing *IF*(site *i*);
- Remove them one at the time until a stable tree is found.

Data: Zygomycetes & Chytridiomycetes

Information About Sites

M. Mariadassou (INRA MIG)

Distance Between Trees

Distance between trees

 $d(T_0, T_i) \approx 18$ and $d(T_i, T_j) \leq 2$ for i, j = 1..45

- Strongest Outlier (position 142): Highly variable site located on a med loop (5nt) located on a conserved hairpin;
- Removing most influent sites leads to Increased bootstrap values and loss of 20% of inner nodes;
- Confirms monophyly of phyla Glomeromycota
- Reinforces polyphyletic status of phyla Chytridiomycota and Zygomycota

Motivation: Filter Data

- Study the robustness of the tree with respect to the species
- Identify rogue taxa.

Procedure

- Quantify influence of taxon *i* by:
 - Removing site *i* from alignment;
 - Computing new tree T⁻ⁱ from smaller (jackknife) alignment;
 - Comparing new tree to original tree;
- Compute phylogeny from "not too influent sites".

Motivation: Filter Data

- Study the robustness of the tree with respect to the species
- Identify rogue taxa.

Procedure

- Quantify influence of taxon *i* by:
 - Removing site *i* from alignment;
 - Computing new tree T⁻ⁱ from smaller (jackknife) alignment;
 - Comparing new tree to original tree;
- Compute phylogeny from "not too influent sites".

Method

Data: Placental Mammal Phylogeny

- Mitochondrial genome of 68 mammals;
- Amino Acids sequences;
- Sequences are 3658 AA long;
- MtMam + I + Γ 4 model;
- Phylogeny published in Nikaido et al. in 2003.

Taxon Influence Index

Complete Phylogeny

Influential Species (mostly in Afrotheria)

Data: Bilaterian Transcription Factor T-Box

- T-box TF of 164 metazoans, involved in gastrulation;
- Amino Acids sequences;
- Sequences are 296 AA long;
- LG + I + Γ4 model;
- Ancient family with 8 subfamilies
 - Brachyury
 - Tbx1/10
 - Tbx15/18/22
 - Tbx20
 - Tbx2/3
 - Tbx4/5
 - Tbx6/VegT
 - Eomes/Tbr1/Tbx21
- Interest lies in the position of TF OITbx present in a Oscarella lobularis.

T-Box TF Phylogeny

Number of Tbx in tree	164	127	123	116
BP of OITbx in clade TBX2/3	19	32	34	59

No sponge (yet) identified as a member of the Tbx2/3 subfamily: new evolutionary hypothesis.

Potential Sources of Instability and Indexes to Detect Them

- Data sampling: Bootstrap;
- Outliers: Influence function for sites;

Rogue species: Taxon Influence Index.

Pros and Cons

- Assess uncertainty coming from different sources;
- e Highlight potential outliers;
- No rigorous statistical threshold for inclusion (p-values,...)