Uncovering Latent Structure in Valued Graphs

M. Mariadassou, S. Robin

UMR AgroParisTech/INRA MIA 518, Paris

ECCS07, October 2007

Mariadassou (AgroParisTech)

Uncovering Structure in Valued Graphs

ECCS07 1/20

イロト イポト イヨト イ

Outline

Motivations

- An Explicit Random Graph Model
 - Some Notations
 - ERMG Graph Model

Parametric Estimation

- Log-likelihoods and Variational Inference
- Iterative algorithm
- Model Selection Criterion

Simulation Study

- Quality of the estimates
- Number of Classes

Outline

Motivations

- An Explicit Random Graph Model
 Some Notations
 ERMG Graph Model
 Parametric Estimation

 Log-likelihoods and Variational Inference
 Iterative algorithm
 - Model Selection Criterion

Simulation Study

- Quality of the estimates
- Number of Classes

H 5

Motivations for the study of networks

Networks...

- Arise in many fields:
 - \rightarrow Biology, Chemistry
 - → Physics, Internet.
- Represent an interaction pattern:
 - $\rightarrow O(n^2)$ interactions
 - \rightarrow between *n* elements.
- Have a topology which:
 - → reflects the structure/function relationship

From Barabási website

ECCS07 4 / 20

Outline

Motivations

An Explicit Random Graph Model
 Some Notations
 ERMG Graph Model

Parametric Estimation

- Log-likelihoods and Variational Inference
- Iterative algorithm
- Model Selection Criterion

Simulation Study

- Quality of the estimates
- Number of Classes

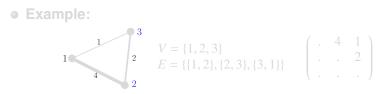
Some Notations

Notations:

- \rightarrow V a set of vertices in $\{1, \ldots, n\}$;
- \rightarrow *E* a set of edges in $\{1, \ldots, n\}^2$;
- \rightarrow **X** = (*X*_{*ij*}) the adjacency matrix, with *X*_{*ij*} the value of the edge between *i* and *j*.

Random graph definition:

→ The joint distribution of the X_{ij} describes the topology of the network.



• • • • • • • • • • • •

Some Notations

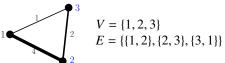
Notations:

- \rightarrow V a set of vertices in $\{1, \ldots, n\}$;
- \rightarrow *E* a set of edges in $\{1, \ldots, n\}^2$;
- \rightarrow **X** = (*X*_{*ij*}) the adjacency matrix, with *X*_{*ij*} the value of the edge between *i* and *j*.

Random graph definition:

→ The joint distribution of the X_{ij} describes the topology of the network.

• Example:



$$\left(\begin{array}{ccc} \cdot & 4 & 1 \\ \cdot & \cdot & 2 \\ \cdot & \cdot & \cdot \end{array}\right)$$

ERMG Probabilistic Model (vertices)

Vertices heterogeneity

- \rightarrow Hypothesis: the vertices are distributed among *Q* classes with different connectivity;
- $\rightarrow \mathbb{Z} = (\mathbb{Z}_i)_i; Z_{iq} = \mathbb{1}\{i \in q\}$ are indep. hidden variables;
- $\rightarrow \alpha = \{\alpha_q\}$, the *prior* proportions of groups;
- $\rightarrow (\mathbb{Z}_i) \sim \mathcal{M}(1, \alpha).$
- Example:
 - \rightarrow Example for 8 nodes and 3 classes with $\alpha = (0.25, 0.25, 0.5)$

イロト イポト イヨト イヨト

ERMG Probabilistic Model (vertices)

Vertices heterogeneity

- \rightarrow Hypothesis: the vertices are distributed among *Q* classes with different connectivity;
- \rightarrow **Z** = (**Z**_{*i*})_{*i*}; $Z_{iq} = \mathbb{1}\{i \in q\}$ are indep. hidden variables;
- $\rightarrow \alpha = \{\alpha_q\}$, the *prior* proportions of groups;

$$\rightarrow$$
 (**Z**_{*i*}) ~ $\mathcal{M}(1, \alpha)$.

• Example:

 \rightarrow Example for 8 nodes and 3 classes with $\alpha = (0.25, 0.25, 0.5)$

< ロト < 同ト < ヨト < ヨト

ERMG Probabilistic Model (vertices)

Vertices heterogeneity

- \rightarrow Hypothesis: the vertices are distributed among *Q* classes with different connectivity;
- \rightarrow **Z** = (**Z**_{*i*})_{*i*}; $Z_{iq} = \mathbb{1}{i \in q}$ are indep. hidden variables;
- $\rightarrow \alpha = \{\alpha_q\}$, the *prior* proportions of groups;
- \rightarrow (**Z**_{*i*}) ~ $\mathcal{M}(1, \alpha)$.

Example:

 \rightarrow Example for 8 nodes and 3 classes with $\alpha = (0.25, 0.25, 0.5)$

 $P(\bullet) = 0.25$ $P(\bullet) = 0.25$

 $P(\triangle) = 0.5$

• X distribution

- → conditional distribution : $X_{ij}|\{i \in q, j \in l\} \sim f_{\theta_{ql}};$
- $\rightarrow \theta = (\theta_{ql})$ is the connectivity paramater matrix;
- → ERMG : "Erdös-Rényi Mixture for Graphs".

• Example:

 \rightarrow Example for 3 classes with Bernoulli-valued edges;

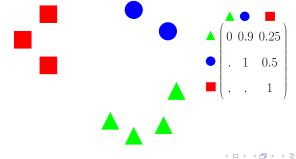
• • • • • • • • • • • •

• X distribution

- → conditional distribution : $X_{ij}|\{i \in q, j \in l\} \sim f_{\theta_{ql}};$
- $\rightarrow \theta = (\theta_{ql})$ is the connectivity paramater matrix;
- → ERMG : "Erdös-Rényi Mixture for Graphs".

• Example:

 \rightarrow Example for 3 classes with Bernoulli-valued edges;

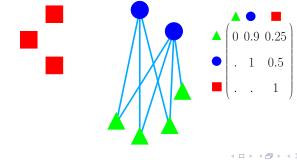


X distribution

- → conditional distribution : $X_{ij}|\{i \in q, j \in l\} \sim f_{\theta_{ql}};$
- $\rightarrow \theta = (\theta_{ql})$ is the connectivity paramater matrix;
- → ERMG : "Erdös-Rényi Mixture for Graphs".

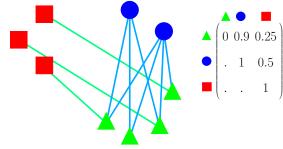
• Example:

→ Example for 3 classes with Bernoulli-valued edges;



• X distribution

- → conditional distribution : $X_{ij}|\{i \in q, j \in l\} \sim f_{\theta_{ql}};$
- $\rightarrow \theta = (\theta_{ql})$ is the connectivity paramater matrix;
- → ERMG : "Erdös-Rényi Mixture for Graphs".
- Example:
 - \rightarrow Example for 3 classes with Bernoulli-valued edges;

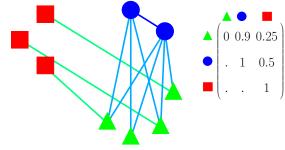


• X distribution

- → conditional distribution : $X_{ij}|\{i \in q, j \in l\} \sim f_{\theta_{ql}};$
- $\rightarrow \theta = (\theta_{ql})$ is the connectivity paramater matrix;
- → ERMG : "Erdös-Rényi Mixture for Graphs".

• Example:

 \rightarrow Example for 3 classes with Bernoulli-valued edges;

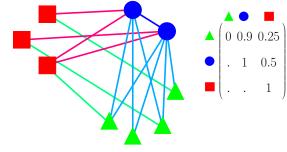


• X distribution

- → conditional distribution : $X_{ij}|\{i \in q, j \in l\} \sim f_{\theta_{ql}};$
- $\rightarrow \theta = (\theta_{ql})$ is the connectivity paramater matrix;
- → ERMG : "Erdös-Rényi Mixture for Graphs".

• Example:

 \rightarrow Example for 3 classes with Bernoulli-valued edges;



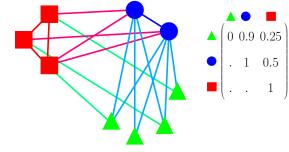
- 4 ∃ ▶

• X distribution

- → conditional distribution : $X_{ij}|\{i \in q, j \in l\} \sim f_{\theta_{ql}};$
- $\rightarrow \theta = (\theta_{ql})$ is the connectivity paramater matrix;
- → ERMG : "Erdös-Rényi Mixture for Graphs".

• Example:

→ Example for 3 classes with Bernoulli-valued edges;



- 4 ∃ ▶

- Classical Distributions:
- $\rightarrow f_{\theta}$ can be any probability distribution;
- \rightarrow Bernoulli: presence/absence of an edge;
- \rightarrow Multinomial: nature of the connection (friend, lover, colleague);
- → Poisson: in coauthorship networks, number of copublished papers;
- \rightarrow Gaussian: intensity of the connection (airport network);
- → Bivariate Gaussian: directed networks where forward and backward edges are correlated;
- \rightarrow Etc.

ERMG is a model to easily generate graphs

- Classical Distributions:
- $\rightarrow f_{\theta}$ can be any probability distribution;
- \rightarrow Bernoulli: presence/absence of an edge;
- \rightarrow Multinomial: nature of the connection (friend, lover, colleague);
- → Poisson: in coauthorship networks, number of copublished papers;
- \rightarrow Gaussian: intensity of the connection (airport network);
- → Bivariate Gaussian: directed networks where forward and backward edges are correlated;
- \rightarrow Etc.

ERMG is a model to easily generate graphs

- Classical Distributions:
- $\rightarrow f_{\theta}$ can be any probability distribution;
- \rightarrow Bernoulli: presence/absence of an edge;
- \rightarrow Multinomial: nature of the connection (friend, lover, colleague);
- → Poisson: in coauthorship networks, number of copublished papers;
- \rightarrow Gaussian: intensity of the connection (airport network);
- → Bivariate Gaussian: directed networks where forward and backward edges are correlated;
- \rightarrow Etc.

ERMG is a model to easily generate graphs

- Classical Distributions:
- $\rightarrow f_{\theta}$ can be any probability distribution;
- \rightarrow Bernoulli: presence/absence of an edge;
- \rightarrow Multinomial: nature of the connection (friend, lover, colleague);
- → Poisson: in coauthorship networks, number of copublished papers;
- \rightarrow Gaussian: intensity of the connection (airport network);
- → Bivariate Gaussian: directed networks where forward and backward edges are correlated;
- \rightarrow Etc.

ERMG is a model to easily generate graphs

- Classical Distributions:
- $\rightarrow f_{\theta}$ can be any probability distribution;
- \rightarrow Bernoulli: presence/absence of an edge;
- \rightarrow Multinomial: nature of the connection (friend, lover, colleague);
- → Poisson: in coauthorship networks, number of copublished papers;
- \rightarrow Gaussian: intensity of the connection (airport network);
- → Bivariate Gaussian: directed networks where forward and backward edges are correlated;
- \rightarrow Etc.

ERMG is a model to easily generate graphs

- Classical Distributions:
- $\rightarrow f_{\theta}$ can be any probability distribution;
- \rightarrow Bernoulli: presence/absence of an edge;
- \rightarrow Multinomial: nature of the connection (friend, lover, colleague);
- → Poisson: in coauthorship networks, number of copublished papers;
- \rightarrow Gaussian: intensity of the connection (airport network);
- → Bivariate Gaussian: directed networks where forward and backward edges are correlated;
- \rightarrow Etc.

ERMG is a model to easily generate graphs

- Classical Distributions:
- $\rightarrow f_{\theta}$ can be any probability distribution;
- \rightarrow Bernoulli: presence/absence of an edge;
- \rightarrow Multinomial: nature of the connection (friend, lover, colleague);
- → Poisson: in coauthorship networks, number of copublished papers;
- \rightarrow Gaussian: intensity of the connection (airport network);
- → Bivariate Gaussian: directed networks where forward and backward edges are correlated;
- \rightarrow Etc.

ERMG is a model to easily generate graphs

< 🗇 🕨 < 🖃 🕨

- Classical Distributions:
- $\rightarrow f_{\theta}$ can be any probability distribution;
- \rightarrow Bernoulli: presence/absence of an edge;
- \rightarrow Multinomial: nature of the connection (friend, lover, colleague);
- → Poisson: in coauthorship networks, number of copublished papers;
- \rightarrow Gaussian: intensity of the connection (airport network);
- → Bivariate Gaussian: directed networks where forward and backward edges are correlated;
- \rightarrow Etc.

ERMG is a model to easily generate graphs

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Outline

Motivations

- An Explicit Random Graph Model
 Some Notations
 - ERMG Graph Model

Parametric Estimation

- Log-likelihoods and Variational Inference
- Iterative algorithm
- Model Selection Criterion

Simulation Study

- Quality of the estimates
- Number of Classes

Log-Likelihood of the model

First Idea: Use maximum likelihood estimators

Complete data likelihood

$$\mathcal{L}(\mathbf{X}, \mathbf{Z}) = \sum_{i} \sum_{q} Z_{iq} \ln \alpha_{q} + \sum_{i < j} \sum_{q, l} Z_{iq} Z_{jl} \ln f_{\theta_{ql}}(X_{ij})$$

with $f_{\theta_{al}}(X_{ij})$ likelihood of edge value X_{ij} under $i \sim q$ and $j \sim l$.

Observed data likelihood

$$\mathcal{L}(\mathbf{X}) = \ln \sum_{\mathbf{Z}} \exp \mathcal{L}(\mathbf{X}, \mathbf{Z})$$

- The observed data likelihood requires a sum over *Q*^{*n*} terms, and is thus untractable;
- EM-like strategies require the knowledge of Pr(Z|X), also untractable (no conditional independence) and thus also fail.

・ロト ・ 同ト ・ ヨト ・ ヨト

Log-Likelihood of the model

First Idea: Use maximum likelihood estimators

Complete data likelihood

$$\mathcal{L}(\mathbf{X}, \mathbf{Z}) = \sum_{i} \sum_{q} Z_{iq} \ln \alpha_{q} + \sum_{i < j} \sum_{q, l} Z_{iq} Z_{jl} \ln f_{\theta_{ql}}(X_{ij})$$

with $f_{\theta_{al}}(X_{ij})$ likelihood of edge value X_{ij} under $i \sim q$ and $j \sim l$.

Observed data likelihood

$$\pounds(X) = ln \sum_{Z} exp \, \pounds(X, Z)$$

- The observed data likelihood requires a sum over *Q*^{*n*} terms, and is thus untractable;
- EM-like strategies require the knowledge of Pr(Z|X), also untractable (no conditional independence) and thus also fail.

イロト 不得 トイヨト イヨト 二日

Log-Likelihood of the model

First Idea: Use maximum likelihood estimators

Complete data likelihood

$$\mathcal{L}(\mathbf{X}, \mathbf{Z}) = \sum_{i} \sum_{q} Z_{iq} \ln \alpha_{q} + \sum_{i < j} \sum_{q, l} Z_{iq} Z_{jl} \ln f_{\theta_{ql}}(X_{ij})$$

with $f_{\theta_{al}}(X_{ij})$ likelihood of edge value X_{ij} under $i \sim q$ and $j \sim l$.

Observed data likelihood

$$\mathcal{L}(X) = ln \sum_{Z} exp \, \mathcal{L}(X, Z)$$

- The observed data likelihood requires a sum over *Qⁿ* terms, and is thus untractable;
- EM-like strategies require the knowledge of Pr(Z|X), also untractable (no conditional independence) and thus also fail.

・ロト ・ 四ト ・ ヨト ・ ヨ

Variational Inference: Pseudo Likelihood

Main Idea: Replace complicated Pr(Z|X) by a simple $\mathcal{R}_X[Z]$ such that $KL(\mathcal{R}_X[Z], Pr(Z|X))$ is minimal.

• Optimize in \mathcal{R}_X the function $\mathcal{J}(\mathcal{R}_X)$ given by :

$$\begin{aligned} \mathcal{J}(\mathcal{R}_{\mathbf{X}}[\mathbf{Z}]) &= \mathcal{L}(\mathbf{X}) - KL(\mathcal{R}_{\mathbf{X}}[\mathbf{Z}], \Pr(\mathbf{Z}|\mathbf{X})) \\ &= \mathcal{H}(\mathcal{R}_{\mathbf{X}}[\mathbf{Z}]) - \sum_{\mathbf{Z}} \mathcal{R}_{\mathbf{X}}[\mathbf{Z}]\mathcal{L}(\mathbf{X}, \mathbf{Z}) \end{aligned}$$

• For simple $\mathcal{R}_{\mathbf{X}}$, $\mathcal{J}(\mathcal{R}_{\mathbf{X}}[\mathbf{Z}])$ is tractable,

• At best, $\mathcal{R}_{\mathbf{X}} = \Pr(\mathbf{Z}|\mathbf{X})$ and $\mathcal{J}(\mathcal{R}_{\mathbf{X}}[\mathbf{Z}]) = \mathcal{L}(\mathbf{X})$.

• • • • • • • • • • • •

Variational Inference: Pseudo Likelihood

Main Idea: Replace complicated Pr(Z|X) by a simple $\mathcal{R}_X[Z]$ such that $KL(\mathcal{R}_X[Z], Pr(Z|X))$ is minimal.

• Optimize in \mathcal{R}_X the function $\mathcal{J}(\mathcal{R}_X)$ given by :

$$\begin{aligned} \mathcal{J}(\mathcal{R}_{\mathbf{X}}[\mathbf{Z}]) &= \mathcal{L}(\mathbf{X}) - KL(\mathcal{R}_{\mathbf{X}}[\mathbf{Z}], \Pr(\mathbf{Z}|\mathbf{X})) \\ &= \mathcal{H}(\mathcal{R}_{\mathbf{X}}[\mathbf{Z}]) - \sum_{\mathbf{Z}} \mathcal{R}_{\mathbf{X}}[\mathbf{Z}]\mathcal{L}(\mathbf{X}, \mathbf{Z}) \end{aligned}$$

• For simple $\mathcal{R}_{\mathbf{X}}$, $\mathcal{J}(\mathcal{R}_{\mathbf{X}}[\mathbf{Z}])$ is tractable,

• At best, $\mathcal{R}_{\mathbf{X}} = \Pr(\mathbf{Z}|\mathbf{X})$ and $\mathcal{J}(\mathcal{R}_{\mathbf{X}}[\mathbf{Z}]) = \mathcal{L}(\mathbf{X})$.

Variational Inference: Pseudo Likelihood

Main Idea: Replace complicated Pr(Z|X) by a simple $\mathcal{R}_X[Z]$ such that $KL(\mathcal{R}_X[Z], Pr(Z|X))$ is minimal.

• Optimize in \mathcal{R}_X the function $\mathcal{J}(\mathcal{R}_X)$ given by :

$$\mathcal{J}(\mathcal{R}_{\mathbf{X}}[\mathbf{Z}]) = \mathcal{L}(\mathbf{X}) - KL(\mathcal{R}_{\mathbf{X}}[\mathbf{Z}], \Pr(\mathbf{Z}|\mathbf{X}))$$
$$= \mathcal{H}(\mathcal{R}_{\mathbf{X}}[\mathbf{Z}]) - \sum_{\mathbf{Z}} \mathcal{R}_{\mathbf{X}}[\mathbf{Z}]\mathcal{L}(\mathbf{X}, \mathbf{Z})$$

- For simple \mathcal{R}_X , $\mathcal{J}(\mathcal{R}_X[\mathbf{Z}])$ is tractable,
- At best, $\mathcal{R}_{\mathbf{X}} = Pr(\mathbf{Z}|\mathbf{X})$ and $\mathcal{J}(\mathcal{R}_{\mathbf{X}}[\mathbf{Z}]) = \mathcal{L}(\mathbf{X})$.

2 Steps Iterative Algorithm

- Step 1 Optimize $\mathcal{J}(\mathcal{R}_X[\mathbf{Z}])$ w.r.t. $\mathcal{R}_X[\mathbf{Z}]$:
 - $\rightarrow\,$ Restriction to a "comfortable" class of functions;
 - $\rightarrow \mathcal{R}_{\mathbf{X}}[\mathbf{Z}] = \prod_{i} h(\mathbf{Z}_{i}; \tau_{i})$, with $h(.; \tau_{i})$ the multinomial distribution;
 - $\rightarrow \tau_{iq}$ is a variational parameter to be optimized using a fixed point algorithm:

$$ilde{ au}_{iq} \propto lpha_q \prod_{j
eq i} \prod_{l=1}^{\mathcal{Q}} f_{ heta_{ql}}(X_{ij})^{ ilde{ au}_{jl}}$$

• Step 2 Optimize $\mathcal{J}(\mathcal{R}_X[\mathbf{Z}])$ w.r.t. (α, θ) :

→ Constraint: $\sum_{q} \alpha_q = 1$

$$\begin{aligned} \tilde{\alpha}_{q} &= \sum_{i} \tilde{\tau}_{iq}/n \\ \tilde{\theta}_{ql} &= \arg\max_{\theta} \sum_{ij} \tilde{\tau}_{iq} \tilde{\tau}_{jl} \log f_{\theta}(X_{ij}) \end{aligned}$$

 \rightarrow Closed expression of $\tilde{\theta}_{ql}$ for classical distributions

Mariadassou (AgroParisTech)

Uncovering Structure in Valued Graphs

ECCS07 13 / 20

2 Steps Iterative Algorithm

- Step 1 Optimize $\mathcal{J}(\mathcal{R}_X[\mathbf{Z}])$ w.r.t. $\mathcal{R}_X[\mathbf{Z}]$:
 - $\rightarrow\,$ Restriction to a "comfortable" class of functions;
 - $\rightarrow \mathcal{R}_{\mathbf{X}}[\mathbf{Z}] = \prod_{i} h(\mathbf{Z}_{i}; \tau_{i})$, with $h(.; \tau_{i})$ the multinomial distribution;
 - $\rightarrow \tau_{iq}$ is a variational parameter to be optimized using a fixed point algorithm:

$$ilde{ au}_{iq} \propto lpha_q \prod_{j
eq i} \prod_{l=1}^{\mathcal{Q}} f_{ heta_{ql}}(X_{ij})^{ ilde{ au}_{jl}}$$

• Step 2 Optimize $\mathcal{J}(\mathcal{R}_X[\mathbf{Z}])$ w.r.t. (α, θ) :

$$\rightarrow \text{ Constraint: } \sum_{q} \alpha_{q} = 1$$

$$\vec{\alpha}_{q} = \sum_{i} \tilde{\tau}_{iq} / n$$

$$\vec{\theta}_{ql} = \arg \max_{\theta} \sum_{ij} \tilde{\tau}_{iq} \tilde{\tau}_{jl} \log f_{\theta}(X_{ij})$$

 $\rightarrow\,$ Closed expression of $\tilde{\theta}_{ql}$ for classical distributions.

Model Selection Criterion

- We derive a statistical BIC-like criterion to select the number of classes:
- The likelihood can be split: $\mathcal{L}(\mathbf{X}, \mathbf{Z}|Q) = \mathcal{L}(\mathbf{X}|\mathbf{Z}, Q) + \mathcal{L}(\mathbf{Z}|Q)$.
- These terms can be penalized separately:

$$\begin{aligned} \mathcal{L}(\mathbf{X}|\mathbf{Z}, Q) &\to \quad \mathsf{pen}_{\mathbf{X}|\mathbf{Z}} = \frac{Q(Q+1)}{2}\log\frac{n(n-1)}{2} \\ \mathcal{L}(\mathbf{Z}|Q) &\to \quad \mathsf{pen}_{\mathbf{Z}} = (Q-1)\log(n) \end{aligned}$$

$$ICL(Q) = \max_{\boldsymbol{\theta}} \mathcal{L}(\mathbf{X}, \tilde{\mathbf{Z}} | \boldsymbol{\theta}, m_Q) - \frac{1}{2} \left(\frac{Q(Q+1)}{2} \log \frac{n(n-1)}{2} - (Q-1) \log(n) \right)$$

Model Selection Criterion

- We derive a statistical BIC-like criterion to select the number of classes:
- The likelihood can be split: $\mathcal{L}(\mathbf{X}, \mathbf{Z}|Q) = \mathcal{L}(\mathbf{X}|\mathbf{Z}, Q) + \mathcal{L}(\mathbf{Z}|Q)$.
- These terms can be penalized separately:

$$\mathcal{L}(\mathbf{X}|\mathbf{Z}, Q) \rightarrow \mathsf{pen}_{\mathbf{X}|\mathbf{Z}} = \frac{Q(Q+1)}{2} \log \frac{n(n-1)}{2}$$
$$\mathcal{L}(\mathbf{Z}|Q) \rightarrow \mathsf{pen}_{\mathbf{Z}} = (Q-1) \log(n)$$

$$ICL(Q) = \max_{\boldsymbol{\theta}} \mathcal{L}(\mathbf{X}, \tilde{\mathbf{Z}} | \boldsymbol{\theta}, m_Q) - \frac{1}{2} \left(\frac{Q(Q+1)}{2} \log \frac{n(n-1)}{2} - (Q-1) \log(n) \right)$$

• • • • • • • • • • • •

Outline

Motivations

- An Explicit Random Graph Model
 Some Notations
 - ERMG Graph Model
 - Parametric Estimation
 - Log-likelihoods and Variational Inference
 - Iterative algorithm
 - Model Selection Criterion

Simulation Study

- Quality of the estimates
- Number of Classes

- \rightarrow Undirected graph with Q = 3 classes;
- \rightarrow Poisson-valued edges;
- \rightarrow *n* = 100, 500 vertices;
- $\rightarrow \alpha_q \propto a^q$ for a = 1, 0.5, 0.2;
 - *a* = 1: balanced classes;
 - *a* = 0.2: unbalanced classes (80.6%, 16.1%, 3.3%)

 \rightarrow Connectivity matrix of the form $\begin{vmatrix} \gamma \lambda & \lambda & \gamma \lambda \end{vmatrix}$ f

$$\lambda = 0.1, 0.5, 0.9, 1.5 \text{ and } \lambda = 2, 5.$$

- $\gamma = 1$: all classes equivalent (same connectivity pattern);
- $\gamma \ll 1$: classes are different;
- λ : mean value of an edge;
- \rightarrow 100 repeats for each setup.

- \rightarrow Undirected graph with Q = 3 classes;
- \rightarrow Poisson-valued edges;
- \rightarrow *n* = 100, 500 vertices;
- $\rightarrow \alpha_q \propto a^q$ for a = 1, 0.5, 0.2;
 - *a* = 1: balanced classes;
 - *a* = 0.2: unbalanced classes (80.6%, 16.1%, 3.3%)

 \rightarrow Connectivity matrix of the form $\left| \begin{array}{cc} \gamma \lambda & \lambda & \gamma \lambda \end{array} \right|$

$$\gamma = 0.1, 0.5, 0.9, 1.5 \text{ and } \lambda = 2, 5.$$

- $\gamma = 1$: all classes equivalent (same connectivity pattern);
- $\gamma \ll 1$: classes are different;
- λ : mean value of an edge;
- \rightarrow 100 repeats for each setup.

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

- \rightarrow Undirected graph with Q = 3 classes;
- \rightarrow Poisson-valued edges;
- \rightarrow *n* = 100, 500 vertices;
- $\rightarrow \alpha_q \propto a^q$ for a = 1, 0.5, 0.2;
 - *a* = 1: balanced classes;
 - *a* = 0.2: unbalanced classes (80.6%, 16.1%, 3.3%)

 \rightarrow Connectivity matrix of the form $\left| \begin{array}{cc} \gamma \lambda & \lambda & \gamma \lambda \end{array} \right|$

$$\lambda = 0.1, 0.5, 0.9, 1.5 \text{ and } \lambda = 2, 5.$$

- $\gamma = 1$: all classes equivalent (same connectivity pattern);
- $\gamma \ll 1$: classes are different;
- λ : mean value of an edge;
- \rightarrow 100 repeats for each setup.

- \rightarrow Undirected graph with Q = 3 classes;
- \rightarrow Poisson-valued edges;
- \rightarrow *n* = 100, 500 vertices;
- $\rightarrow \alpha_q \propto a^q$ for a = 1, 0.5, 0.2;
 - *a* = 1: balanced classes;
 - *a* = 0.2: unbalanced classes (80.6%, 16.1%, 3.3%)

 \rightarrow Connectivity matrix of the form $\begin{vmatrix} \chi & \chi & \chi \\ \gamma \lambda & \lambda & \gamma \lambda \end{vmatrix}$ for

 $\gamma = 0.1, 0.5, 0.9, 1.5 \text{ and } \lambda = 2, 5.$

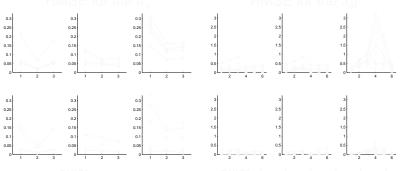
- $\gamma = 1$: all classes equivalent (same connectivity pattern);
- $\gamma \ll 1$: classes are different;
- λ : mean value of an edge;
- \rightarrow 100 repeats for each setup.

イロト イポト イヨト イ

- \rightarrow Undirected graph with Q = 3 classes;
- \rightarrow Poisson-valued edges;
- \rightarrow *n* = 100, 500 vertices;
- $\rightarrow \alpha_q \propto a^q$ for a = 1, 0.5, 0.2;
 - *a* = 1: balanced classes;
 - *a* = 0.2: unbalanced classes (80.6%, 16.1%, 3.3%)
- $\rightarrow \text{ Connectivity matrix of the form} \begin{pmatrix} \lambda & \gamma\lambda & \gamma\lambda \\ \gamma\lambda & \lambda & \gamma\lambda \\ \gamma\lambda & \gamma\lambda & \lambda \end{pmatrix} \text{for}$
 - $\gamma = 0.1, \ 0.5, \ 0.9, \ 1.5 \text{ and } \lambda = 2, \ 5.$
 - $\gamma = 1$: all classes equivalent (same connectivity pattern);
 - $\gamma \ll 1$: classes are different;
 - λ : mean value of an edge;
- \rightarrow 100 repeats for each setup.

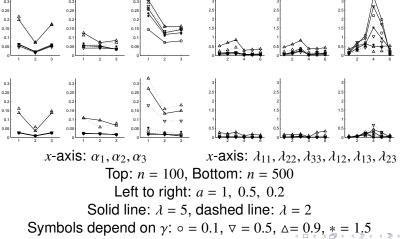
Quality of the Estimates: Results

• Root Mean Square Error (RMSE) = $\sqrt{Bias^2 + Variance}$



x-axis: $\alpha_1, \alpha_2, \alpha_3$ Top: n = 100, Bottom: n = 500Left to right: a = 1, 0.5, 0.2Solid line: $\lambda = 5$, dashed line: $\lambda = 2$ Symbols depend on γ : $\circ = 0.1$, $\nabla = 0.5$, $\Delta = 0.9$, * = 1.5

Quality of the Estimates: Results



Number of Classes: Simulation Setup

- \rightarrow Undirected graph with $Q^{\star} = 3$ classes;
- \rightarrow Poisson-valued edges;
- \rightarrow *n* = 50, 100, 500, 1000 vertices;

$$\rightarrow \alpha_q = (57.1\%, 28, 6\%, 14, 3\%)$$
 (or $a = 0.5$);

 $\rightarrow \lambda = 2, \gamma = 0.5;$

- \rightarrow Retrieve *Q* that maximizes ICL;
- \rightarrow 100 repeats for each value of *n*;

イロト イ団ト イヨト イヨト

Simulation Study Number of Classes

Number of Classes: Results

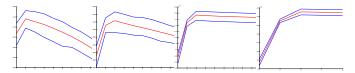


Figure: Mean ICL and 90% confidence interval as a function of Q = 1..10. From left to right: n = 50, n = 100, n = 500, n = 1000.

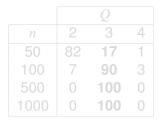


Table: Frequency (in %) at which O is select원đ 1개 (제가하나 종) 후 한 것으로 Mariadassou (AgroParisTech) Uncovering Structure in Valued Graphs ECCS07 19/20

Number of Classes: Results

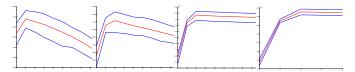


Figure: Mean ICL and 90% confidence interval as a function of Q = 1..10. From left to right: n = 50, n = 100, n = 500, n = 1000.

		Q	
n	2	3	4
50	82	17	1
100	7	90	3
500	0	100	0
1000	0	100	0

Table: Frequency (in %) at which Ω is selected for various $\overline{n}^* = 2^{-2}$

Mariadassou (AgroParisTech)

Uncovering Structure in Valued Graphs

ECCS07 19/20

Summary

Flexibility of ERMG

- Probabilistic model which captures features of real-networks,
- Models various network topologies,
- A promising alternative to existing methods.

Estimation and Model selection

- Variational approaches to compute approximate MLE when dependencies are complex,
- A statistical criterion to choose the number of classes (ICL).

Extensions

Network motifs

Mariadassou (AgroParisTech)