Uncovering Structure in Biological Networks

J-J. Daudin¹, V. Lacroix², <u>M. Mariadassou¹</u>, V. Miele³, F. Picard³, S. Robin¹, M-F. Sagot².

¹UMR INAPG/ENGREF/INRA MIA 518, Paris

²Projet HELIX, INRIA Rhône-Alpes

³UMR CNRS-8071/INRA-1152, Statistique et Génome, Évry

RIAMS 2006, December 2006

Outline

Motivations

- 2 An Explicit Random Graph Model
 - Some Notations
 - ER and ERMG Graph Model

Parametric Estimation

- Log-likelihoods and Variational Inference
- Iterative algorithm
- Model Selection Criterion

4 Application

Outline

Motivations

- 2 An Explicit Random Graph Model
 - Some Notations
 - ER and ERMG Graph Model

Parametric Estimation

- Log-likelihoods and Variational Inference
- Iterative algorithm
- Model Selection Criterion

Application

・ 同 ト ・ ヨ ト ・ ヨ ト

Networks...

- Arise in many fields:
 - \rightarrow Biology, Chemistry
 - → Physics, Internet.
- Represent an interaction pattern:
 - $\rightarrow O(n^2)$ interactions
 - \rightarrow between *n* elements.
- Have a topology which:
 - → reflects the structure/function relationship

From Barabási website

Outline

Motivations

2 An Explicit Random Graph Model
 • Some Notations
 • ER and ERMG Graph Model

Parametric Estimation

- Log-likelihoods and Variational Inference
- Iterative algorithm
- Model Selection Criterion

Application

< 回 ト < 三 ト < 三

Sac

Notations:

- \rightarrow V a set of vertices in $\{1, \ldots, n\}$
- \rightarrow *E* a set of edges in $\{1, \ldots, n\}^2$
- \rightarrow **X** = (*X*_{*ij*}) the adjacency matrix, with *X*_{*ij*} = $\mathbb{1}(i \sim j)$.

Possible extensions

- \rightarrow Directed graphs: $X_{ij} \neq X_{ji}$
- \rightarrow Valued graphs: $X_{ij} \in \mathbb{N}, \mathbb{R}$

Random graph definition:

→ The joint distribution of the X_{ij} describes the topology of the network.

ヘロト ヘ戸ト ヘヨト ヘヨト

The Model

- \rightarrow The oldest and best-known graph model,
- \rightarrow The (*X_{ij}*) are independent, with distribution $\mathcal{B}(p)$.

Some Properties and Problems

 \rightarrow Degree K_i of a node *i* has a Poisson distribution,

$$K_i = \sum_{j \neq i} X_{ij} \sim \mathcal{P}(\lambda)$$

 \rightarrow Clustering coefficient *c* is low: *c* = *p*

$$c = \Pr\{X_{jk} = 1 | X_{ij} = X_{ik} = 1\} = \Pr\{\nabla | \mathbf{V}\}$$

→ Highly inaccurate to describe real networks.

< ロト < 同ト < ヨト < ヨト

Vertices heterogeneity

- \rightarrow Hypothesis: the vertices are distributed among Q classes with different connectivity,
- \rightarrow **Z** = (**Z**_{*i*})_{*i*}, $Z_{iq} = \mathbb{1}{i \in q}$ are indep. hidden variables,
- $\rightarrow \alpha = \{\alpha_q\}$, the *prior* proportions of groups,
- $\rightarrow (\mathbf{Z}_i) \sim \mathcal{M}(1, \alpha).$

X distribution

- \rightarrow conditional distribution : $X_{ij}|\{i \in q, j \in l\} \sim \mathcal{B}(\pi_{ql}),$
- $\rightarrow \pi = (\pi_{ql})$ is the connectivity matrix,
- → ERMG : "Erdös-Rényi Mixture for Graphs".

ERMG is a model to easily generate graphs

Vertices heterogeneity

- \rightarrow Hypothesis: the vertices are distributed among Q classes with different connectivity,
- \rightarrow **Z** = (**Z**_{*i*})_{*i*}, $Z_{iq} = \mathbb{1}{i \in q}$ are indep. hidden variables,
- $\rightarrow \alpha = \{\alpha_q\}$, the *prior* proportions of groups,
- $\rightarrow (\mathbf{Z}_i) \sim \mathcal{M}(1, \alpha).$

X distribution

- \rightarrow conditional distribution : $X_{ij}|\{i \in q, j \in l\} \sim \mathcal{B}(\pi_{ql}),$
- $\rightarrow \pi = (\pi_{ql})$ is the connectivity matrix,
- → ERMG : "Erdös-Rényi Mixture for Graphs".

ERMG is a model to easily generate graphs

• Degree distribution

$$\rightarrow K_i|\{Z_{iq}=1\} \sim \mathcal{P}(\lambda_q), \, \lambda_q=(n-1)\bar{\pi}_q, \, \bar{\pi}_q=\sum_l \alpha_l \pi_{ql},$$

$$\rightarrow K_i \sim \sum_q \alpha_q \mathcal{P}(\lambda_q),$$

- \rightarrow Mixture distribution of K_i is a sub-product of ERMG,
- Clustering coefficient: ERMG and the probabilistic definition give:

$$c = \sum_{q,l,m} \alpha_q \alpha_l \alpha_m \pi_{ql} \pi_{qm} \pi_{lm} \left| \sum_{q,l,m} \alpha_q \alpha_l \alpha_m \pi_{ql} \pi_{qm} \right|.$$

ERMG couterpart to some topologies

Description	Network	Q	π	Clustering coef.
Random		1	р	р
Stars		4	$\left(\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	0
Clusters (affiliation networks)		2	$\left(\begin{array}{cc}1 & \varepsilon\\ \varepsilon & 1\end{array}\right)$	$\frac{1+3\varepsilon^2}{(1+\varepsilon)^2}$

<ロト < 回ト < 回ト < 回ト

3

DQC

Outline

Motivations

- 2 An Explicit Random Graph Model
 - Some Notations
 - ER and ERMG Graph Model

Parametric Estimation

- Log-likelihoods and Variational Inference
- Iterative algorithm
- Model Selection Criterion

Application

→ Ξ > < Ξ >

Log-Likelihood of the model

First Idea: Use maximum likelihood estimators

Complete data likelihood

$$\mathcal{L}(\mathbf{X}, \mathbf{Z}) = \sum_{i} \sum_{q} Z_{iq} \ln \alpha_{q} + \sum_{i < j} \sum_{q, l} Z_{iq} Z_{jl} \ln b(\pi_{ql}, X_{ij})$$

where
$$b(\pi_{ql}, X_{ij}) = \pi_{ql}^{X_{ij}} (1 - \pi_{ql})^{(1 - X_{ij})}$$

Observed data likelihood

$$\mathcal{L}(\mathbf{X}) = \ln \sum_{\mathbf{Z}} \exp \mathcal{L}(\mathbf{X}, \mathbf{Z})$$

- The observed data likelihood requires a sum over *Q*^{*n*} terms, and is thus untractable
- EM-like strategies require the knowledge of Pr(Z|X), also untractable (no conditional independence) and thus also fail.

Mariadassou (INA-PG)

Log-Likelihood of the model

First Idea: Use maximum likelihood estimators

Complete data likelihood

$$\mathcal{L}(\mathbf{X}, \mathbf{Z}) = \sum_{i} \sum_{q} Z_{iq} \ln \alpha_{q} + \sum_{i < j} \sum_{q, l} Z_{iq} Z_{jl} \ln b(\pi_{ql}, X_{ij})$$

where
$$b(\pi_{ql}, X_{ij}) = \pi_{ql}^{X_{ij}} (1 - \pi_{ql})^{(1 - X_{ij})}$$

Observed data likelihood

$$\pounds(X) = ln \sum_{Z} exp \pounds(X, Z)$$

- The observed data likelihood requires a sum over *Q*^{*n*} terms, and is thus untractable
- EM-like strategies require the knowledge of Pr(Z|X), also untractable (no conditional independence) and thus also fail.

Mariadassou (INA-PG)

Log-Likelihood of the model

First Idea: Use maximum likelihood estimators

Complete data likelihood

$$\mathcal{L}(\mathbf{X}, \mathbf{Z}) = \sum_{i} \sum_{q} Z_{iq} \ln \alpha_{q} + \sum_{i < j} \sum_{q, l} Z_{iq} Z_{jl} \ln b(\pi_{ql}, X_{ij})$$

where
$$b(\pi_{ql}, X_{ij}) = \pi_{ql}^{X_{ij}} (1 - \pi_{ql})^{(1 - X_{ij})}$$

Observed data likelihood

$$\pounds(X) = ln \sum_{Z} exp \pounds(X, Z)$$

- The observed data likelihood requires a sum over *Qⁿ* terms, and is thus untractable
- EM-like strategies require the knowledge of Pr(Z|X), also untractable (no conditional independence) and thus also fail.

Mariadassou (INA-PG) Uncovering Structure in Biological Networks RIAMS 2006, 29/12/2006 12 / 21

Main Idea: Replace complicated Pr(Z|X) by a simple $\mathcal{R}_X[Z]$ such that $KL(\mathcal{R}_X[Z], Pr(Z|X))$ is minimal.

• Optimize in \mathcal{R}_X the function $\mathcal{J}(\mathcal{R}_X)$ given by :

$$\begin{aligned} \mathcal{J}(\mathcal{R}_{\mathbf{X}}[\mathbf{Z}]) &= \mathcal{L}(\mathbf{X}) - KL(\mathcal{R}_{\mathbf{X}}[\mathbf{Z}], \Pr(\mathbf{Z}|\mathbf{X})) \\ &= \mathcal{H}(\mathcal{R}_{\mathbf{X}}[\mathbf{Z}]) - \sum_{\mathbf{Z}} \mathcal{R}_{\mathbf{X}}[\mathbf{Z}]\mathcal{L}(\mathbf{X}, \mathbf{Z}) \end{aligned}$$

• For simple \mathcal{R}_X , $\mathcal{J}(\mathcal{R}_X[\mathbb{Z}])$ is tractable,

• At best, $\mathcal{R}_{\mathbf{X}} = \Pr(\mathbf{Z}|\mathbf{X})$ and $\mathcal{J}(\mathcal{R}_{\mathbf{X}}[\mathbf{Z}]) = \mathcal{L}(\mathbf{X})$.

< ロト < 同ト < ヨト < ヨト

Main Idea: Replace complicated Pr(Z|X) by a simple $\mathcal{R}_X[Z]$ such that $KL(\mathcal{R}_X[Z], Pr(Z|X))$ is minimal.

• Optimize in \mathcal{R}_X the function $\mathcal{J}(\mathcal{R}_X)$ given by :

$$\mathcal{J}(\mathcal{R}_{\mathbf{X}}[\mathbf{Z}]) = \mathcal{L}(\mathbf{X}) - KL(\mathcal{R}_{\mathbf{X}}[\mathbf{Z}], \Pr(\mathbf{Z}|\mathbf{X}))$$
$$= \mathcal{H}(\mathcal{R}_{\mathbf{X}}[\mathbf{Z}]) - \sum_{\mathbf{Z}} \mathcal{R}_{\mathbf{X}}[\mathbf{Z}]\mathcal{L}(\mathbf{X}, \mathbf{Z})$$

• For simple \mathcal{R}_X , $\mathcal{J}(\mathcal{R}_X[\mathbf{Z}])$ is tractable,

• At best, $\mathcal{R}_{\mathbf{X}} = \Pr(\mathbf{Z}|\mathbf{X})$ and $\mathcal{J}(\mathcal{R}_{\mathbf{X}}[\mathbf{Z}]) = \mathcal{L}(\mathbf{X})$.

Mariadassou (INA-PG)

Uncovering Structure in Biological Networks RIAMS 2006, 29/12/2006 13 / 21

Main Idea: Replace complicated Pr(Z|X) by a simple $\mathcal{R}_X[Z]$ such that $KL(\mathcal{R}_X[Z], Pr(Z|X))$ is minimal.

• Optimize in \mathcal{R}_X the function $\mathcal{J}(\mathcal{R}_X)$ given by :

$$\mathcal{J}(\mathcal{R}_{\mathbf{X}}[\mathbf{Z}]) = \mathcal{L}(\mathbf{X}) - KL(\mathcal{R}_{\mathbf{X}}[\mathbf{Z}], \Pr(\mathbf{Z}|\mathbf{X}))$$
$$= \mathcal{H}(\mathcal{R}_{\mathbf{X}}[\mathbf{Z}]) - \sum_{\mathbf{Z}} \mathcal{R}_{\mathbf{X}}[\mathbf{Z}]\mathcal{L}(\mathbf{X}, \mathbf{Z})$$

- For simple \mathcal{R}_X , $\mathcal{J}(\mathcal{R}_X[\mathbf{Z}])$ is tractable,
- At best, $\mathcal{R}_{\mathbf{X}} = \Pr(\mathbf{Z}|\mathbf{X})$ and $\mathcal{J}(\mathcal{R}_{\mathbf{X}}[\mathbf{Z}]) = \mathcal{L}(\mathbf{X})$.

2 Steps Iterative Algorithm

• Step 1 Optimize $\mathcal{J}(\mathcal{R}_X[\mathbf{Z}])$ w.r.t. $\mathcal{R}_X[\mathbf{Z}]$:

- → Restriction to a "comfortable" class of functions,
- $\rightarrow \mathcal{R}_{\mathbf{X}}[\mathbf{Z}] = \prod_{i} h(\mathbf{Z}_{i}; \tau_{i})$, with $h(.; \tau_{i})$ the multinomial distribution,
- $\rightarrow \tau_{iq}$ is a variational parameter to be optimized using a fixed point algorithm:

$$\widehat{ au_{iq}} \propto lpha_q \prod_{j
eq i} \prod_{l=1}^{Q} b(\pi_{ql}, X_{ij})^{\widetilde{ au}_{jl}}$$

• Step 2 Optimize $\mathcal{J}(\mathcal{R}_{\mathbf{X}}[\mathbf{Z}])$ w.r.t. (α, π) :

 \rightarrow Constraint: $\sum_{q} \alpha_{q} = 1$

$$\begin{array}{lll} \tilde{\alpha}_{q} & = & \sum_{i} \tilde{\tau}_{iq}/n \\ \tilde{\pi}_{ql} & = & \sum_{ij}^{i} \tilde{\tau}_{iq} \tilde{\tau}_{jl} X_{ij} / \sum_{ij} \tilde{\tau}_{iq} \tilde{\tau}_{jl} \end{array}$$

Mariadassou (INA-PG)

2 Steps Iterative Algorithm

• Step 1 Optimize $\mathcal{J}(\mathcal{R}_X[\mathbf{Z}])$ w.r.t. $\mathcal{R}_X[\mathbf{Z}]$:

- → Restriction to a "comfortable" class of functions,
- $\rightarrow \mathcal{R}_{\mathbf{X}}[\mathbf{Z}] = \prod_{i} h(\mathbf{Z}_{i}; \tau_{i})$, with $h(.; \tau_{i})$ the multinomial distribution,
- $\rightarrow \tau_{iq}$ is a variational parameter to be optimized using a fixed point algorithm:

$$\tilde{\tau}_{iq} \propto \alpha_q \prod_{j \neq i} \prod_{l=1}^{Q} b(\pi_{ql}, X_{ij})^{\tilde{\tau}_{jl}}$$

• Step 2 Optimize $\mathcal{J}(\mathcal{R}_{\mathbf{X}}[\mathbf{Z}])$ w.r.t. (α, π) :

 \rightarrow Constraint: $\sum_{q} \alpha_q = 1$

Mariadassou (INA-PG)

- We derive a statistical BIC-like criterion to select the number of classes:
- The likelihood can be split: $\mathcal{L}(\mathbf{X}, \mathbf{Z}|Q) = \mathcal{L}(\mathbf{X}|\mathbf{Z}, Q) + \mathcal{L}(\mathbf{Z}|Q)$.
- These terms can be penalized separately:

$$\mathcal{L}(\mathbf{X}|\mathbf{Z}, Q) \rightarrow \text{pen}_{\mathbf{X}|\mathbf{Z}} = \frac{Q(Q+1)}{2}\log\frac{n(n-1)}{2}$$
$$\mathcal{L}(\mathbf{Z}|Q) \rightarrow \text{pen}_{\mathbf{Z}} = (Q-1)\log(n)$$

$$ICL(Q) = \max_{\boldsymbol{\theta}} \mathcal{L}(\mathbf{X}, \tilde{\mathbf{Z}} | \boldsymbol{\theta}, m_Q) - \frac{1}{2} \left(\frac{Q(Q+1)}{2} \log \frac{n(n-1)}{2} - (Q-1) \log(n) \right)$$

Mariadassou (INA-PG)

Uncovering Structure in Biological Networks RIAMS 2006, 29/12/2006 15 / 21

< ロト < 同ト < ヨト < ヨト

- We derive a statistical BIC-like criterion to select the number of classes:
- The likelihood can be split: $\mathcal{L}(\mathbf{X}, \mathbf{Z}|Q) = \mathcal{L}(\mathbf{X}|\mathbf{Z}, Q) + \mathcal{L}(\mathbf{Z}|Q).$
- These terms can be penalized separately:

$$\mathcal{L}(\mathbf{X}|\mathbf{Z}, Q) \rightarrow \text{pen}_{\mathbf{X}|\mathbf{Z}} = \frac{Q(Q+1)}{2} \log \frac{n(n-1)}{2} \\ \mathcal{L}(\mathbf{Z}|Q) \rightarrow \text{pen}_{\mathbf{Z}} = (Q-1) \log(n)$$

$$ICL(Q) = \max_{\boldsymbol{\theta}} \mathcal{L}(\mathbf{X}, \tilde{\mathbf{Z}} | \boldsymbol{\theta}, m_Q) - \frac{1}{2} \left(\frac{Q(Q+1)}{2} \log \frac{n(n-1)}{2} - (Q-1) \log(n) \right)$$

Mariadassou (INA-PG)

< ロト < 同ト < ヨト < ヨト

Outline

Motivations

- 2 An Explicit Random Graph Model
 - Some Notations
 - ER and ERMG Graph Model

Parametric Estimation

- Log-likelihoods and Variational Inference
- Iterative algorithm
- Model Selection Criterion

Application

< 6 b

A B < A B </p>

Data and short results

Reaction Network of E.Coli:

- → data from http://www.biocyc.org/,
- \rightarrow *n* = 605 vertices (reactions) and 1 782 edges.
- \rightarrow 2 reactions *i* and *j* are connected if the product of *i* is the substrate of *j* (cofactors excluded),
- → V. Lacroix and M.-F. Sagot (INRIA Hélix).

Question:

 $\rightarrow\,$ Interpretation of the connectivity structure of classes?

ERMG results:

- \rightarrow ICL gives $\hat{Q} = 21$ classes,
- → Most classes correspond to pseudo-cliques,
- → Clustering coefficient and degree distribution asses a good fit of the model to the data.

< ロト < 同ト < ヨト < ヨト

500

Biological interpretation of the groups I

- Dot-plot representation
 - → adjacency matrix (sorted)
- Biological interpretation:
 - → Groups 1 to 20 gather reactions involving all the same compound either as a substrate or as a product,
 - → A compound (chorismate, pyruvate, ATP,*etc*) can be associated to each group.
- The structure of the metabolic network is governed by the compounds.

Biological interpretation of the groups II

- → Classes 1 and 16 constitute s single clique corresponding to a single compound (pyruvate),
- → They are split into two classes because they interact differently with classes 7 (CO2) and 10 (AcetylCoA)
- \rightarrow Connectivity matrix (sample):

q, l	1	7	10	16
1	1.0			
7	.11	.65		
10	.43		.67	
16	1.0	.01	ϵ	1.0

Adjacency matrix (sample)

Goodness of Fit of the ERMG Model

Degree distribution (histogram and PP-plot)

Clustering coefficient

Summary

Flexibility of ERMG

- Probabilistic model which captures features of real-networks,
- Models various network topologies,
- A promising alternative to existing methods.

Estimation and Model selection

- Variational approaches to compute approximate MLE when dependencies are complex,
- A statistical criterion to choose the number of classes (ICL).

Extensions

- Directed graphs and valued graphs
- Network motifs (cf. Sophie Schbath's talk)

Mariadassou (INA-PG)

Uncovering Structure in Biological Networks

RIAMS 2006, 29/12/2006 21 / 21

-