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Motivations for the study of networks

Networks. . .

@ Arise in many fields:
— Biology, Chemistry
— Physics, Internet.

@ Represent an interaction pattern:
— O(n?) interactions
— between n elements.

@ Have a topology which:

— reflects the structure/function
relationship

From Barabasi website
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Some Notations

@ Notations:

— V aset of vertices in {1,...,n}
— E asetofedgesin{l,...,n})?
— X = (X;) the adjacency matrix, with X;; = 1G ~ j).

@ Possible extensions
— Directed graphs: X;; # X;;
— Valued graphs: X;; € N,R

@ Random graph definition:

— The joint distribution of the X;; describes the topology of the
network.
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ER (Erdés-Rényi) Graph Model

@ The Model

— The oldest and best-known graph model,
— The (X;) are independent, with distribution B(p).

@ Some Properties and Problems
— Degree K; of a node i has a Poisson distribution,

K= Xy~ PW)

J#i
— Clustering coefficient ¢ is low: ¢ = p
¢ = PriXy = 11X;; = Xy = 1} = Pr{V|V}

— Highly inaccurate to describe real networks.
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ERMG: A New Probabilistic Model

@ Vertices heterogeneity
— Hypothesis: the vertices are distributed among Q classes with
different connectivity,
— Z = (1)), Zi; = 1{i € g} are indep. hidden variables,
— a = {a,}, the prior proportions of groups,
- (Z) ~ M1, @).

@ X distribution
— conditional distribution : Xl{i € ¢,j € I} ~ B(ny),
— @ = (my) is the connectivity matrix,
— ERMG : "Erdds-Rényi Mixture for Graphs".

Mariadassou (INA-PG) Uncovering Structure in Biological Networks RIAMS 2006, 29/12/2006

8/21



ERMG: A New Probabilistic Model

@ Vertices heterogeneity
— Hypothesis: the vertices are distributed among Q classes with
different connectivity,
— Z = (1)), Zi; = 1{i € g} are indep. hidden variables,
— a = {a,}, the prior proportions of groups,
- (Z) ~ M1, @).

@ X distribution
— conditional distribution : Xl{i € ¢,j € I} ~ B(ny),
— @ = (my) is the connectivity matrix,
— ERMG : "Erdds-Rényi Mixture for Graphs".

ERMG is a model to easily generate graphs
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Some Properties of ERMG

@ Degree distribution
i Ki'{Ziq =1}~ P(”-t]); /1q =n- 1)7_1'111 Ty = Zla'lﬂ'qls
- Ki ~ 2, a,P(1y),
— Mixture distribution of K; is a sub-product of ERMG,

@ Clustering coefficient: ERMG and the probabilistic definition
give:

Cc = Z a/qala/mﬂqmqmmm/z Qg AT T gm -
qslm q,lm
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ERMG couterpart to some topologies

Description Network x Clustering
coef.
Random % 1 P »
01 00
1 010
Stars H 4 0101 0
0010
CIu_s_ter_s . a2
(affiliation 2 | —
networks) € (I+e)
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Log-Likelihood of the model

First Idea: Use maximum likelihood estimators
@ Complete data likelihood

LX,Z) = Z Z Zignay+ > " ZigZy Inb(ng, Xy)

i<j q,l

Xij —X:;
where b(ry, Xy) = 7,/ (1 = 1)1 =X9)
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Log-Likelihood of the model

First Idea: Use maximum likelihood estimators
@ Complete data likelihood

LX,Z) = Z Z Zignay+ > " ZigZy Inb(ng, Xy)

i<j q,l

where b(my, X;j) = n;(;f(l — )1 7XD
@ Observed data likelihood

LX) =In Z exp L(X,Z)

Z

Mariadassou (INA-PG) Uncovering Structure in Biological Networks RIAMS 2006, 29/12/2006

12/21



Log-Likelihood of the model

First Idea: Use maximum likelihood estimators
@ Complete data likelihood

L£X,Z) = Z Z Zignay+ > " ZigZy Inb(ng, Xy)
i<j q,l
where b(my, Xy) = 70,/ (1 — 7)1~
@ Observed data likelihood
LX) =1n )" exp L(X,Z)

Z

@ The observed data likelihood requires a sum over Q" terms, and is
thus untractable

@ EM-like strategies require the knowledge of Pr(Z|X), also
untractable (no conditional independence) and thus also fail.

Mariadassou (INA-PG) Uncovering Structure in Biological Networks RIAMS 2006, 29/12/2006 12/21



Variational Inference: Pseudo Likelihood

Main Idea: Replace complicated Pr(Z|X) by a simple Rx[Z] such that
KL(Rx[Z],Pr(Z|X)) is minimal.

Mariadassou (INA-PG) Uncovering Structure in Biological Networks RIAMS 2006, 29/12/2006 13/21



Variational Inference: Pseudo Likelihood

Main Idea: Replace complicated Pr(Z|X) by a simple Rx[Z] such that
KL(Rx[Z],Pr(Z|X)) is minimal.

@ Optimize in Rx the function J(Rx) given by :

J(Rx[Z]) L(X) - KL(Rx[Z], Pr(Z[X))

HRxIZ]) - D RxIZ1L(X, Z)
Z
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Variational Inference: Pseudo Likelihood

Main Idea: Replace complicated Pr(Z|X) by a simple Rx[Z] such that
KL(Rx[Z],Pr(Z|X)) is minimal.

@ Optimize in Rx the function J(Rx) given by :

J(Rx[Z]) L(X) - KL(Rx[Z], Pr(Z[X))

HRxIZ]) - D RxIZ1L(X, Z)
Z

@ For simple Rx, J(Rx[Z)) is tractable,

@ At best, Rx = Pr(Z|X) and J(Rx[Z]) = L(X).
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2 Steps lterative Algorithm

@ Step 1 Optimize J(Rx([Z]) w.r.t. Rx[Z]:
— Restriction to a "comfortable" class of functions,
— Rx[Z] = [1, H(Z;; T;), with h(.; T;) the multinomial distribution,
— T, is a variational parameter to be optimized using a fixed point

algorithm:
Tig & oy l_[ l_[ b(ﬂ'q[,XU) 7

JFE I=1
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2 Steps lterative Algorithm

@ Step 1 Optimize J(Rx([Z]) w.r.t. Rx[Z]:
— Restriction to a "comfortable" class of functions,
— Rx[Z] = [1, H(Z;; T;), with h(.; T;) the multinomial distribution,
— T, is a variational parameter to be optimized using a fixed point

algorithm:

0

‘T','q < y l_[ l_[ b(ﬂ'q[,X[j)f"’

j#i =1

@ Step 2 Optimize J(Rx([Z]) w.r.t. (@, n):
— Constraint: 3, a, =1

G, = ) Ty/n

l

Ty = Z TigTiXij/ Z TigTil
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Model Selection Criterion

@ We derive a statistical BIC-like criterion to select the number of
classes:

@ The likelihood can be split: £(X,Z|Q) = LX|Z, Q) + L(Z|Q).

@ These terms can be penalized separately:

1 -1
LXIZ.Q) — penyy = Q(Q2+ ) log "(”2 )

L(ZIQ) — peng =(Q - 1)log(n)
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Model Selection Criterion

@ We derive a statistical BIC-like criterion to select the number of
classes:

@ The likelihood can be split: £(X,Z|Q) = LX|Z, Q) + L(Z|Q).

@ These terms can be penalized separately:

1 -1
LXIZ.Q) — penyy = Q(Q2+ ) log "(”2 )

L(ZIQ) — peng =(Q - 1)log(n)

ICL(Q) = max L(X. 210.mg) - 3 (29 10g "L — (0 - 1) log(n))
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Data and short results

@ Reaction Network of E.Coli:
— data from http://www.biocyc.org/,
— n = 605 vertices (reactions) and 1 782 edges.
— 2 reactions i and j are connected if the product of i is the substrate
of j (cofactors excluded),
— V. Lacroix and M.-F. Sagot (INRIA - Hélix).

@ Question:
— Interpretation of the connectivity structure of classes?

@ ERMG results:
— ICL gives Q =21 classes,
— Most classes correspond to pseudo-cliques,
— Clustering coefficient and degree distribution asses a good fit of the
model to the data.
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Biological interpretation of the groups |

@ Dot-plot representation
— adjacency matrix (sorted)
@ Biological interpretation:
— Groups 1 to 20 gather

reactions involving all the soofil 11441 14 4
same compound either as a ‘
substrate or as a product, sl [hTHAS:

— A compound (chorismate, .
pyruvate, ATP,etc) can be

associated to each group.
@ The structure of the metabolic _
network is governed by the e ———————
compounds.
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Biological interpretation of the groups |l

— Classes 1 and 16 constitute s
single clique corresponding to 7
ol .‘: .~. iTesd'

a single compound (pyruvate), It

— They are split into two classes C
because they interact e
differently with classes 7 ; H
(CO2) and 10 (AcetylCoA) T T

— Connectivity matrix (sample): g . =

gl 1 7 10 16 : e
1 ]1.0 BIIESE
7 65 ' '
10 .67

16 | 1.0 1.0

i

Adjacency matrix (sample)
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Goodness of Fit of the ERMG Model

Degree distribution (histogram and PP-plot)
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Clustering coefficient

Empirical  ERMG (0 =21) ER(Q =1)
0.626 0.544 0.0098
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Summary

Flexibility of ERMG
@ Probabilistic model which captures features of real-networks,
@ Models various network topologies,
@ A promising alternative to existing methods.

Estimation and Model selection

@ Variational approaches to compute approximate MLE when
dependencies are complex,

@ A statistical criterion to choose the number of classes (ICL).

Extensions
@ Directed graphs and valued graphs
@ Network motifs (cf. Sophie Schbath’s talk)
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