Phylogeny Robustness: Influence of Species

M. Mariadassou A. Bar-Hen H. Kishino

MAP5 Lab Université Paris Descartes

> January 2009 SMPGD'09

Jan 09

1/23

M. Mariadassou (Univ. Paris Descartes)

Main Goal:

Use biological macromolecules (DNA, proteins) to unravel the evolutionary history of a set of species

Basic Ideas:

- Closely related species: highly similar molecules,
- Distantly related species: not so similar molecules,
- Use similarity information to reconstruct probable evolution,

Results:

- Evolution is assumed to be tree-like,
- Results are displayed as a phylogenetic tree.

• • • • • • • • • • • • •

Main Goal:

Use biological macromolecules (DNA, proteins) to unravel the evolutionary history of a set of species

Basic Ideas:

- Closely related species: highly similar molecules,
- Distantly related species: not so similar molecules,
- Use similarity information to reconstruct probable evolution,

Results:

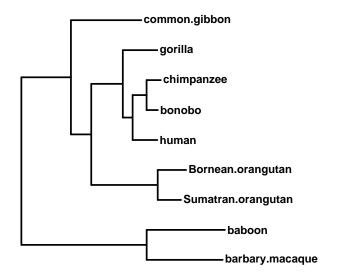
- Evolution is assumed to be tree-like,
- Results are displayed as a phylogenetic tree.

イロト イ団ト イヨト イヨト

Main Goal:

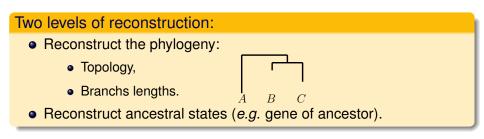
Use biological macromolecules (DNA, proteins) to unravel the evolutionary history of a set of species

Basic Ideas:


- Closely related species: highly similar molecules,
- Distantly related species: not so similar molecules,
- Use similarity information to reconstruct probable evolution,

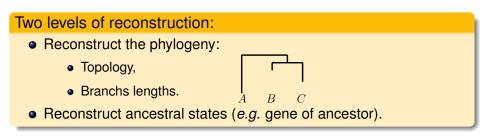
Results:

- Evolution is assumed to be tree-like,
- Results are displayed as a phylogenetic tree.


< ロト < 同ト < ヨト < ヨト

Example of A Phylogenetic Tree

イロト イポト イヨト イヨト


Reconstructions and Limits

lssues:

- Evolution is a unique event,
- Genetic information available only for extant species,
- Almost no direct observations or results on the evolutionary process.

Reconstructions and Limits

Issues:

- Evolution is a unique event,
- Genetic information available only for extant species,
- Almost no direct observations or results on the evolutionary process.

Collection: Select gene/protein shared by all species, sequence it and align the sequences.

Example:

• Alignment $\mathcal{X} = (X_{ij})$ of size $s \times n$ (6 species \times 10 sites)

Fin Whale	М	Ν	Ε	Ν	L	F	Α	Р	F
Blue Whale	M	N	E	Ν	L	F	A	Р	F
Chimpanzee	Μ	N	Ε	Ν	L	F	A	S	F
Bonobo	Μ	N	Ε	Ν	L	F	A	S	F
Gorilla	Μ	N	Ε	Ν	L	F	A	S	F
Bornean Orangutan	М	Ν	Ε	D	L	F	Т	Р	F

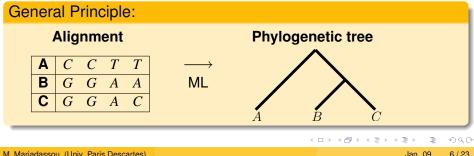
• $\mathcal{X}_{24} = \mathbf{N}$,

• 4th site: $\mathbf{X}_4 = (\mathbf{NNNNND})'$,

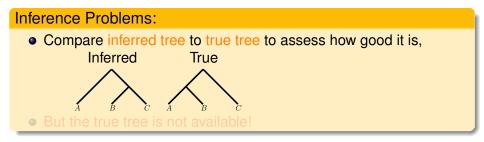
• 2^{nd} species (Harbor Seal): $\mathbf{X}^{(2)} = \underline{MNENLFAPFM}$.

イロト イポト イヨト イヨト

Inference Method


Likelihood Based

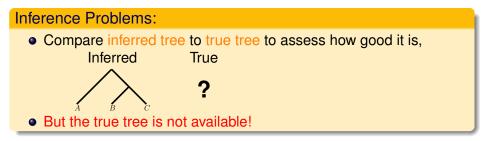
- Assume (**X**_{*i*}) *i.i.d.*;
- Choose generating evolution model $M(T, \theta_T)$;
- Discrete topology *T* and continuous parameter model;
- Retrieve $(\hat{T}, \hat{\theta}_{\hat{T}})$ maximizing $\mathbb{P}((\mathbf{X}_i); M, T, \theta_T)$.


Inference Method

Likelihood Based

- Assume (\mathbf{X}_i) *i.i.d.*;
- Choose generating evolution model $M(T, \theta_T)$;
- Discrete topology T and continuous parameter model;
- Retrieve $(\hat{T}, \hat{\theta}_{\hat{T}})$ maximizing $\mathbb{P}((\mathbf{X}_i); M, T, \theta_T)$.

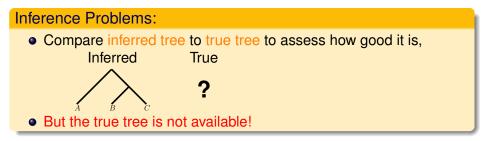
End of The Story ?



Confidence Issue:

- How confident are we on the inferred tree ?
- Which parts of the tree are reliable/not reliable ?

• • • • • • • •


End of The Story ?

Confidence Issue:

- How confident are we on the inferred tree ?
- Which parts of the tree are reliable/not reliable ?

End of The Story ?

Confidence Issue:

- How confident are we on the inferred tree ?
- Which parts of the tree are reliable/not reliable ?

Confidence or Robustness ?

Confidence: Another (independent) data set gives (roughly) the same inferred tree;

Robustness: Tweaking the (original) data set gives (roughly) the same inferred tree.

Robustness

 Most (if not all) available procedures are designed to check robustness, not confidence;

• The inferred tree might be far from the true tree, as long it is consistently so, we are happy;

• • • • • • • • • • • • •

Confidence or Robustness ?

Confidence: Another (independent) data set gives (roughly) the same inferred tree;

Robustness: Tweaking the (original) data set gives (roughly) the same inferred tree.

Robustness

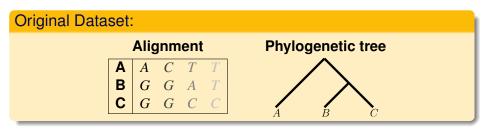
 Most (if not all) available procedures are designed to check robustness, not confidence;

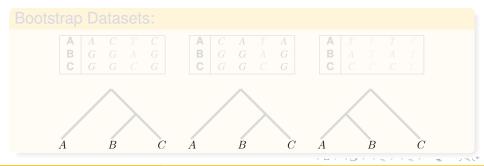
 The inferred tree might be far from the true tree, as long it is consistently so, we are happy;

A (10) < A (10) < A (10) </p>

Confidence or Robustness ?

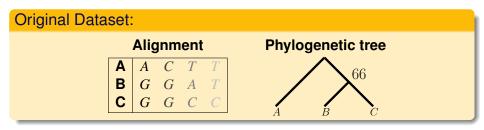
Confidence: Another (independent) data set gives (roughly) the same inferred tree;

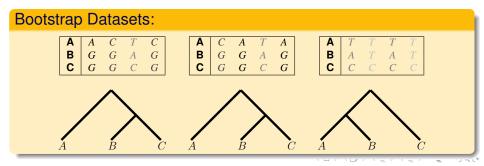

Robustness: Tweaking the (original) data set gives (roughly) the same inferred tree.

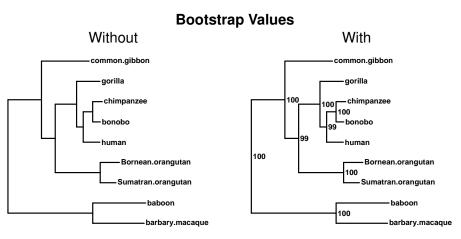

Robustness

- Most (if not all) available procedures are designed to check robustness, not confidence;
- The inferred tree might be far from the true tree, as long it is consistently so, we are happy;

A (10) < A (10) < A (10) </p>


Bootstrap Values: the Theory




M. Mariadassou (Univ. Paris Descartes)

Bootstrap Values: the Theory

M. Mariadassou (Univ. Paris Descartes)

M. Mariadassou (Univ. Paris Descartes)

E ▶ E りへの Jan. 09 10/23

イロト イポト イヨト イヨト

Bootstrap Values: A Robustness Index ?

Bootstrap Strong Points:

- Many potential causes for uncertainty:
 - Finite sequence lengths,
 - Poor alignment quality (outlier sites),
 - Poor species sampling (rogue species),
 - Model misspecification,
 - . . .

Global measure of uncertainty,

Bootstrap Weak Points:

- Global measure of uncertainty,
- Unable to breakdown the uncertainty,
- Unable to pinpoint local sources of uncertainties,
- Several other ways to tweak the data.

Bootstrap Values: A Robustness Index ?

Bootstrap Strong Points:

- Many potential causes for uncertainty:
 - Finite sequence lengths,
 - Poor alignment quality (outlier sites),
 - Poor species sampling (rogue species),
 - Model misspecification,
 - ...

• Global measure of uncertainty,

Bootstrap Weak Points:

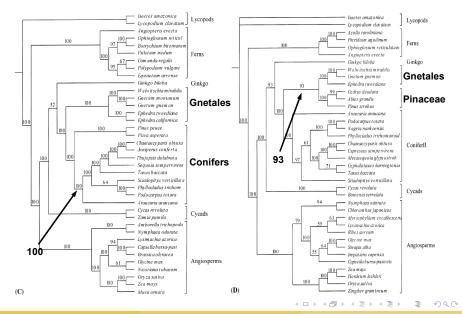
- Global measure of uncertainty,
- Unable to breakdown the uncertainty,
- Unable to pinpoint local sources of uncertainties,
- Several other ways to tweak the data.

A B A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Bootstrap Values: A Robustness Index ?

Bootstrap Strong Points:

Many potential causes for uncertainty:


- Finite sequence lengths,
- Poor alignment quality (outlier sites),
- Poor species sampling (rogue species),
- Model misspecification,
- . . .

• Global measure of uncertainty,

Bootstrap Weak Points:

- Global measure of uncertainty,
- Unable to breakdown the uncertainty,
- Unable to pinpoint local sources of uncertainties,
- Several other ways to tweak the data.

Seed Plant Phylogeny (Ridyn & al. 2002)

M. Mariadassou (Univ. Paris Descartes)

Species Leverage Index (SLI)

• Goal: Study the robustness of the tree with respect to the species,

 Motivation: Thanks to strange evolutionary features not taken into account by the inference method, some species may exert a strong pull toward a biased estimated phylogeny,

• Method:

- Infer the phylogeny T with the whole species set,
- Remove species one at the time and infer a new tree *T_i* on the smaller species set,
- Quantify difference between T and T_i .

< 🗇 🕨 < 🖃 🕨

Species Leverage Index (SLI)

- Goal: Study the robustness of the tree with respect to the species,
- Motivation: Thanks to strange evolutionary features not taken into account by the inference method, some species may exert a strong pull toward a biased estimated phylogeny,

• Method:

- Infer the phylogeny T with the whole species set,
- Remove species one at the time and infer a new tree *T_i* on the smaller species set,
- Quantify difference between T and T_i .

• • • • • • • • • • • •

Species Leverage Index (SLI)

- Goal: Study the robustness of the tree with respect to the species,
- Motivation: Thanks to strange evolutionary features not taken into account by the inference method, some species may exert a strong pull toward a biased estimated phylogeny,

Method:

- Infer the phylogeny T with the whole species set,
- Remove species one at the time and infer a new tree *T_i* on the smaller species set,

< □ > < 同 > < 回 > <

Jan 09

13/23

• Quantify difference between *T* and *T_i*.

Definition

Let:

- $\mathbf{X} = \left(\mathbf{X}^{(1)}, \dots, \mathbf{X}^{(s)}\right)'$ be the complete alignment,
- $\mathbf{X}^{(-i)} = \mathbf{X} \setminus \mathbf{X}^{(i)}$ all the species but species *i*,
- \widehat{T} the ML tree and associated parameters for **X**,
- $\widehat{T}^{(-i)}$ the tree \widehat{T} after pruning species *i*,
- $\widehat{T^{(-i)}}$ the ML tree and associated

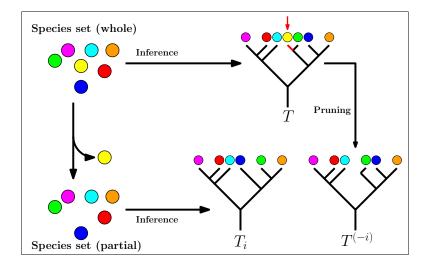
The Species Leverage Index (SLI) of species *i* is:

 $SLI(i) = d(\widehat{T}^{(-i)}, \widehat{T^{(-i)}})$

where d is any adapted distance.

Definition

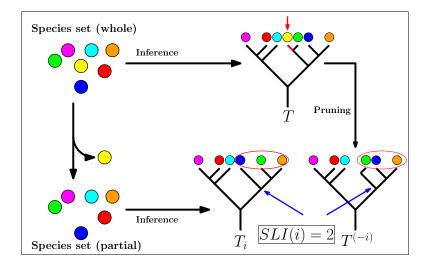
Let:


- $\mathbf{X} = \left(\mathbf{X}^{(1)}, \dots, \mathbf{X}^{(s)}\right)'$ be the complete alignment,
- $\mathbf{X}^{(-i)} = \mathbf{X} \setminus \mathbf{X}^{(i)}$ all the species but species *i*,
- \widehat{T} the ML tree and associated parameters for **X**,
- $\widehat{T}^{(-i)}$ the tree \widehat{T} after pruning species *i*,
- $\widehat{T^{(-i)}}$ the ML tree and associated

The Species Leverage Index (SLI) of species *i* is:

$$SLI(i) = d(\widehat{T}^{(-i)}, \widehat{T^{(-i)}})$$

where d is any adapted distance .


Method

DQC

< ロト < 回 ト < 回 ト < 回 ト</p>

Method

DQC

<ロト < 回ト < 回ト < 回ト

Definition

Let:

- X, $\mathbf{X}^{(-i)}, \widehat{T}, \widehat{T}^{(-i)}, \widehat{T^{(-i)}}$ defined as before,
- A an internal node of \hat{T} ,

The Nodes Leverage Index (NLI) of A is:

$$NLI(A) = \sum_{i=1}^{n} \mathbb{1}_{\widehat{T^{(-i)}}}(A)$$

with $\mathbb{1}_{\widehat{T^{(-i)}}}(A)$ being 1 if A is present in $\overline{T^{(-i)}}$ and 0 otherwise.

M. Mariadassou (Univ. Paris Descartes)

Jan. 09 16 / 23

(4) E (4) E (4) E

Definition

Let:

- X, $\mathbf{X}^{(-i)}$, \widehat{T} , $\widehat{T}^{(-i)}$, $\widehat{T^{(-i)}}$ defined as before,
- A an internal node of \widehat{T} ,

The Nodes Leverage Index (NLI) of A is:

$$NLI(A) = \sum_{i=1}^{n} \mathbb{1}_{\widehat{T^{(-i)}}}(A)$$

Jan. 09

16/23

with $\mathbb{1}_{\widehat{T^{(-i)}}}(A)$ being 1 if A is present in $\widehat{T^{(-i)}}$ and 0 otherwise.

Interpretation

- SLI: Low value: adding/removing the species from the dataset has (almost) impact on the tree;
 - High value: "rogue" species, adding/removing it greatly affects the tree.
- NLI: High value: stable nodes, highly resilient to taxon sampling;
 - Low value: weak nodes, highly sensitive to taxon sampling.

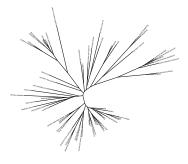
Strategy towards robustness

- Focus on rogues species: species with high SLI;
- Rank them in increasing SLI;
- Remove them one at the time until a stable tree is found.

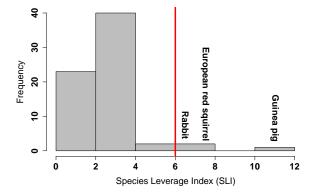
< 回 ト < 三 ト < 三

Interpretation

- SLI: Low value: adding/removing the species from the dataset has (almost) impact on the tree;
 - High value: "rogue" species, adding/removing it greatly affects the tree.
- NLI: High value: stable nodes, highly resilient to taxon sampling;
 - Low value: weak nodes, highly sensitive to taxon sampling.


Strategy towards robustness

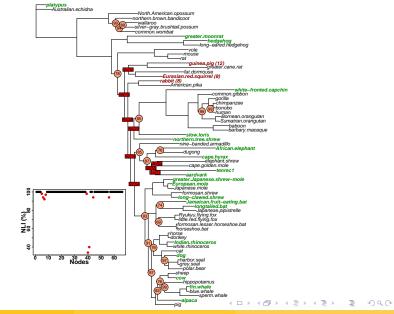
- Focus on rogues species: species with high SLI;
- Rank them in increasing SLI;
- Remove them one at the time until a stable tree is found.


• I > • = • •

Data: Placental Mammal Phylogeny

- Mitochondrial genome of 68 mammals,
- Amino Acids sequences,
- Sequences are 3658 sites long,
- Phylogeny published in Nikaido et al. in 2003.

Species Leverage Index



590


I > <
 I >
 I

-≣->

Complete Phylogeny

Rogue Species

Conclusions

- Bootstrap: global measure of uncertainty,
- SLI,NLI are local ones to pinpoint the sources of uncertainties,
- Decompose the "black box" of bootstrap values,

Perspectives

- Impact of the evolution model,
- Anything else I can think about.

Thank you for your attention!

DQC

< ロト < 回 > < 回 > < 回 > < 回</p>