Influence of Sites and Species on Phylogenetic Stability

M. Mariadassou A. Bar-Hen H. Kishino

Laboratoire MAP5 Université Paris Descartes

> Feb. 2008 Midipile

Feb. 08 1 / 32

- + ∃ →

Main Goal:

Use biological macromolecules (DNA, proteins) to unravel the evolutionary history of a set of species

Basic Ideas:

- Closely related species: highly similar molecules,
- Distantly related species: not so similar molecules,
- Use similarity information to reconstruct probable evolution,

Results:

- Evolution is assumed to be tree-like,
- Results are displayed as a phylogenetic tree.

A B A B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Main Goal:

Use biological macromolecules (DNA, proteins) to unravel the evolutionary history of a set of species

Basic Ideas:

- Closely related species: highly similar molecules,
- Distantly related species: not so similar molecules,
- Use similarity information to reconstruct probable evolution,

Results:

- Evolution is assumed to be tree-like,
- Results are displayed as a phylogenetic tree.

Feb. 08 2 / 32

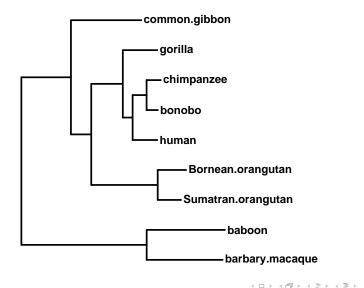
• • • • • • • • • • • •

Main Goal:

Use biological macromolecules (DNA, proteins) to unravel the evolutionary history of a set of species

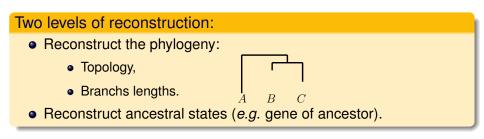
Basic Ideas:

- Closely related species: highly similar molecules,
- Distantly related species: not so similar molecules,
- Use similarity information to reconstruct probable evolution,

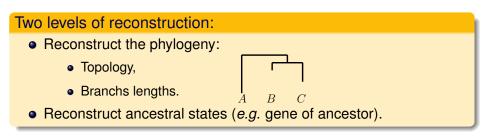

Results:

- Evolution is assumed to be tree-like,
- Results are displayed as a phylogenetic tree.

Feb. 08 2/32


-

Example of A Phylogenetic Tree


Reconstructions and Limits

lssues:

- Evolution is a unique event,
- Genetic information available only for extant species,
- Almost no direct observations or results on the evolutionary process.

Reconstructions and Limits

Issues:

- Evolution is a unique event,
- Genetic information available only for extant species,

Almost no direct observations or results on the evolutionary process.

Collection: Select gene/protein shared by all species, sequence it and align the sequences.

Example:

• Alignment $\mathcal{X} = (X_{ij})$ of size $s \times n$ (6 species \times 10 sites)

Fin Whale	М	Ν	Ε	Ν	L	F	Α	Р	F
Blue Whale	М	Ν	E	Ν	L	F	Α	Р	F
Chimpanzee	Μ	Ν	Ε	Ν	L	F	Α	S	F
Bonobo	Μ	Ν	Ε	Ν	L	F	Α	S	F
Gorilla	Μ	Ν	Ε	Ν	L	F	Α	S	F
Bornean Orangutan	М	Ν	Ε	D	L	F	Т	Р	F

• $\mathcal{X}_{24} = \mathbf{N}$,

• 4th site: $\mathbf{X}_4 = (\mathbf{NNNNND})'$,

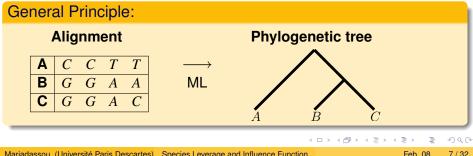
• 2^{nd} species (Harbor Seal): $\mathbf{X}^{(2)} = \underline{MNENLFAPFM}$.

< ロト < 同ト < ヨト < ヨト

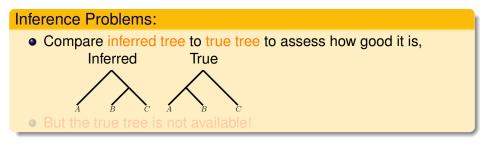
All methods infer the tree which minimize/maximize a given criteria:

- Maximum Parsimony: minimizes the number of changes needed to explain the current data;
- Neighbor-Joining: minimizes a natural estimate of the tree length;
- Maximum Likelihood: maximizes the likelihood of the data;
- Bayesian: maximizes the posterior probability of the data.

Inference Method


Likelihood Based

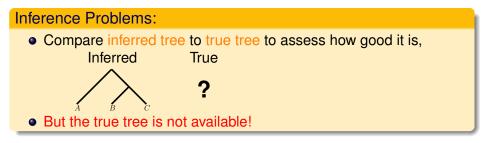
- Assume (**X**_{*i*}) *i.i.d.*;
- Choose generating evolution model $M(T, \theta_T)$;
- Discrete topology *T* and continuous parameter model;
- Retrieve $(\hat{T}, \hat{\theta}_{\hat{T}})$ maximizing $\mathbb{P}((\mathbf{X}_i); M, T, \theta_T)$.


Inference Method

Likelihood Based

- Assume (\mathbf{X}_i) *i.i.d.*;
- Choose generating evolution model $M(T, \theta_T)$;
- Discrete topology T and continuous parameter model;
- Retrieve $(\hat{T}, \hat{\theta}_{\hat{T}})$ maximizing $\mathbb{P}((\mathbf{X}_i); M, T, \theta_T)$.

End of The Story ?

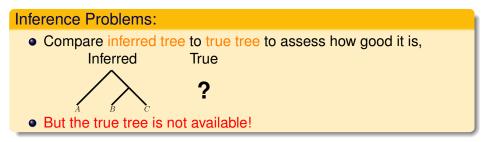

Confidence Issue:

- How confident are we on the inferred tree ?
- Which parts of the tree are reliable/not reliable ?

Feb. 08 8/32

• • • • • • • • • • • •

End of The Story ?


Confidence Issue:

- How confident are we on the inferred tree ?
- Which parts of the tree are reliable/not reliable ?

Feb. 08 8/32

- - ∃ →

End of The Story ?

Confidence Issue:

- How confident are we on the inferred tree ?
- Which parts of the tree are reliable/not reliable ?

Feb. 08 8/32

Confidence or Robustness ?

Confidence: Another (independent) data set gives (roughly) the same inferred tree;

Robustness: Tweaking the (original) data set gives (roughly) the same inferred tree.

Robustness

 Most (if not all) available procedures are designed to check robustness, not confidence;

• The inferred tree might be far from the true tree, as long it is consistently so, we are happy.

• • • • • • • • • • • • •

Confidence or Robustness ?

Confidence: Another (independent) data set gives (roughly) the same inferred tree;

Robustness: Tweaking the (original) data set gives (roughly) the same inferred tree.

Robustness

 Most (if not all) available procedures are designed to check robustness, not confidence;

 The inferred tree might be far from the true tree, as long it is consistently so, we are happy.

Feb. 08 9 / 32

< ロト < 同ト < 三ト

Bootstrap Strong Points:

- Many potential causes for uncertainty:
 - Finite sequence lengths,
 - Poor alignment quality (outlier sites),
 - Poor species sampling (rogue species),
 - Model misspecification,
 - ...

Global measure of uncertainty,

Bootstrap Weak Points:

- Global measure of uncertainty,
- Unable to breakdown the uncertainty,
- Unable to pinpoint local sources of uncertainties,
- Several other ways to tweak the data.

Feb. 08 10 / 32

Bootstrap Strong Points:

- Many potential causes for uncertainty:
 - Finite sequence lengths,
 - Poor alignment quality (outlier sites),
 - Poor species sampling (rogue species),
 - Model misspecification,
 - ...

• Global measure of uncertainty,

Bootstrap Weak Points:

- Global measure of uncertainty,
- Unable to breakdown the uncertainty,
- Unable to pinpoint local sources of uncertainties,
- Several other ways to tweak the data.

Bootstrap Strong Points:

- Many potential causes for uncertainty:
 - Finite sequence lengths,
 - Poor alignment quality (outlier sites),
 - Poor species sampling (rogue species),
 - Model misspecification,
 - . . .

• Global measure of uncertainty,

Bootstrap Weak Points:

- Global measure of uncertainty,
- Unable to breakdown the uncertainty,
- Unable to pinpoint local sources of uncertainties,
- Several other ways to tweak the data.

Feb. 08 10 / 32

Outlier Sites: Motivation and Goal

Motivation: Filter Data

Sites source of errors:

- Sequencing errors;
- Alignment errors;
- Presence of an atypical DNA segment;

Goal

• . . .

• Quantify the influence of each site on the tree;

- Detect outlier sites;
- Infer a robust tree.

Feb. 08 11/32

Motivation: Filter Data

Sites source of errors:

- Sequencing errors;
- Alignment errors;
- Presence of an atypical DNA segment;

Goal

• . . .

Quantify the influence of each site on the tree;

- Detect outlier sites;
- Infer a robust tree.

About the Influence Function

Influence Function: Definition

Let X_1, \ldots, X_n be *i.i.d.* with common d.f. F on \mathcal{R}^d and S(F) a functional of F. The influence function:

$$IF_{S,F}(x) = \lim_{\varepsilon \to 0} \frac{S[(1-\varepsilon)F + \varepsilon \delta_x] - S[F]}{\varepsilon}$$

measure the influence of a perturbation in direction x.

Empirical Version

For unknown *S* and finite size sample, $F \to F_n = \frac{1}{n} \sum_{j=1}^n \delta_{X_j}$, $\varepsilon \to -1/(n-1)$: $IF_{S,F_n}(X_i) = \lim_{\varepsilon \to 0} \frac{S[(1-\varepsilon)F_n + \varepsilon \delta_{X_i}] - S[F_n]}{(n-1)(S(F_n) - S(F_{n,-i}))}$

where $F_{n,-i}$ is the empirical distribution on all sites but *i*.

About the Influence Function

Influence Function: Definition

Let X_1, \ldots, X_n be *i.i.d.* with common d.f. F on \mathcal{R}^d and S(F) a functional of F. The influence function:

$$IF_{S,F}(x) = \lim_{\varepsilon \to 0} \frac{S[(1-\varepsilon)F + \varepsilon \delta_x] - S[F]}{\varepsilon}$$

measure the influence of a perturbation in direction x.

Empirical Version

For unknown *S* and finite size sample, $F \to F_n = \frac{1}{n} \sum_{j=1}^n \delta_{X_j}$, $\varepsilon \to -1/(n-1)$: $IF_{S,F_n}(X_i) = \lim_{\varepsilon \to 0} \frac{S[(1-\varepsilon)F_n + \varepsilon \delta_{X_i}] - S[F_n]}{(n-1)(S(F_n) - \overset{\varepsilon}{S}(F_{n,-i}))}$

where $F_{n,-i}$ is the empirical distribution on all sites but *i*.

And for Phylogenies...

Definition

Let:

- $\mathbf{X} = (\mathbf{X}_1, \dots, \mathbf{X}_n)$ be the complete alignment,
- $\mathbf{X}_{-i} = \mathbf{X} \setminus \mathbf{X}_i$ all the sites but site *i*,
- $(\hat{T}, \hat{\theta}_{\hat{T}})$ the ML tree and associated parameters for X,
- $(\widehat{T_{-i}}, \hat{\theta}_{\widehat{T_{-i}}})$ the ML tree and associated parameters for \mathbf{X}_{-i} ,
- The statistic be:

$$l_{\hat{T}}(\hat{\theta}_{\hat{T}}|\mathbf{X}) = \frac{1}{n} \sum_{i=1}^{n} \log \mathbb{P}(\mathbf{X}_i | \hat{T}, \hat{\theta}_{\hat{T}})$$

The influence value of \mathbf{X}_i is then:

$$IF_{S,F_n}(\mathbf{X}_i) = (n-1) \left(l_{\hat{T}}(\hat{\theta}_{\hat{T}} | \mathbf{X}) - l_{\widehat{T_{-i}}}(\hat{\theta}_{\widehat{T_{-i}}} | \mathbf{X}_{-i}) \right)$$

Feb. 08 13/32

• • • • • • • • • • • •

And for Phylogenies...

Definition

Let:

- $\mathbf{X} = (\mathbf{X}_1, \dots, \mathbf{X}_n)$ be the complete alignment,
- $\mathbf{X}_{-i} = \mathbf{X} \setminus \mathbf{X}_i$ all the sites but site *i*,
- $(\hat{T}, \hat{\theta}_{\hat{T}})$ the ML tree and associated parameters for X,
- $(\widehat{T_{-i}}, \hat{\theta}_{\widehat{T_{-i}}})$ the ML tree and associated parameters for \mathbf{X}_{-i} ,
- The statistic be:

$$l_{\hat{T}}(\hat{\theta}_{\hat{T}}|\mathbf{X}) = \frac{1}{n} \sum_{i=1}^{n} \log \mathbb{P}(\mathbf{X}_i|\hat{T}, \hat{\theta}_{\hat{T}})$$

The influence value of X_i is then:

$$IF_{S,F_n}(\mathbf{X}_i) = (n-1) \left(l_{\hat{T}}(\hat{\theta}_{\hat{T}} | \mathbf{X}) - l_{\widehat{T_{-i}}}(\hat{\theta}_{\widehat{T_{-i}}} | \mathbf{X}_{-i}) \right)$$

• • • • • • • • • • • •

Influence Values

Interpretation

- Positive value: enhanced support for the ML tree;
- Negative value: weakened support for the ML tree;
- Absolute value: strength of the support/disagreement;
- Many sites with small positive values and a few sites with large negative values.

Strategy towards greater stability

- Focus on outliers: sites with $IF(\mathbf{X}_i) < 0$;
- Rank them in increasing $IF(\mathbf{X}_i)$;
- Remove them one at the time until a stable tree is found.

Feb. 08 14 / 32

Influence Values

Interpretation

- Positive value: enhanced support for the ML tree;
- Negative value: weakened support for the ML tree;
- Absolute value: strength of the support/disagreement;
- Many sites with small positive values and a few sites with large negative values.

Strategy towards greater stability

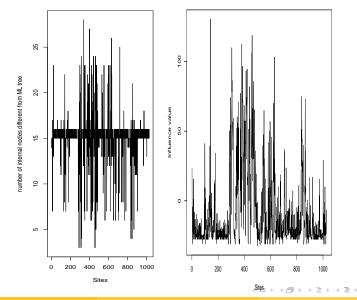
- Focus on outliers: sites with $IF(\mathbf{X}_i) < 0$;
- Rank them in increasing $IF(\mathbf{X}_i)$;
- Remove them one at the time until a stable tree is found.

Feb. 08 14 / 32

Interpretation

- Positive value: enhanced support for the ML tree;
- Negative value: weakened support for the ML tree;
- Absolute value: strength of the support/disagreement;
- Many sites with small positive values and a few sites with large negative values.

Strategy towards greater stability


- Focus on outliers: sites with $IF(\mathbf{X}_i) < 0$;
- Rank them in increasing $IF(\mathbf{X}_i)$;
- Remove them one at the time until a stable tree is found.

Feb. 08 14 / 32

4 D b 4 A b

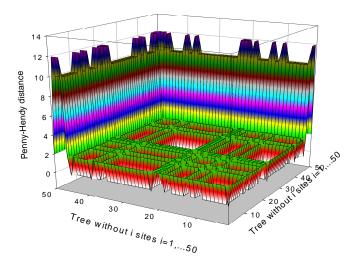
- Lower mushrooms"
- Biology: widely unknown!
- Strong enough phylogenetic signal to correctly resolve the topology.
- 1026 sites, 158 OTUs, GTR model

Information about sites

M. Mariadassou (Université Paris Descartes) Species Leverage and Influence Function

æ Feb. 08 16/32

Distance between trees


0	20	18	18	18	18	18	18	18	20
20	0	2	2	2	2	2	2	2	2
18	2	0	0	0	0	0	0	0	2
18	2	0	0	0	0	0	0	0	2
18	2	0	0	0	0	0	0	0	2
18	2	0	0	0	0	0	0	0	2
18	2	0	0	0	0	0	0	0	2
18	2	0	0	0	0	0	0	0	2
18	2	0	0	0	0	0	0	0	2
20	2	2	2	2	2	2	2	2	0

 T_i : trees constructed without the *i* most influent sites. D_{ii} : Robinson-Foulds distance between T_i and T_i

A (10) < A (10) < A (10) </p>

Distance Between Trees

Distance between trees

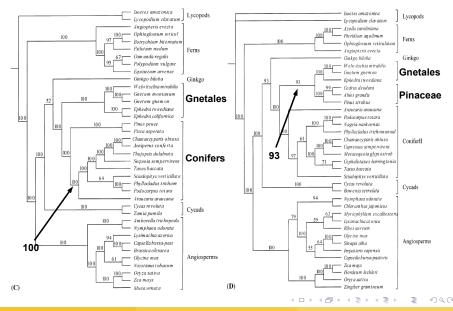
Feb. 08 18 / 32

Bootstrap Strong Points:

Many potential causes for uncertainty:

- Finite sequence lengths,
- Poor alignment quality (outlier sites),
- Poor species sampling (rogue species),
- Model misspecification,
- . . .

Global measure of uncertainty,


Bootstrap Weak Points:

- Global measure of uncertainty,
- Unable to breakdown the uncertainty,
- Unable to pinpoint local sources of uncertainties,
- Several other ways to tweak the data.

Feb. 08 19 / 32

・ コ マ ・ 雪 マ ・ コ マ ・

Seed Plant Phylogeny (Ridyn & al. 2002)

M. Mariadassou (Université Paris Descartes) Species Leverage and Influence Function

Species Leverage Index: Motivation and Goal

Species Leverage Index (SLI)

• Goal: Study the robustness of the tree with respect to the species,

 Motivation: Thanks to strange evolutionary features not taken into account by the inference method, some species may exert a strong pull toward a biased estimated phylogeny,

• Method:

- Infer the phylogeny T with the whole species set,
- Remove species one at the time and infer a new tree *T_i* on the smaller species set,
- Quantify difference between T and T_i .

Feb. 08 21 / 32

Species Leverage Index (SLI)

- Goal: Study the robustness of the tree with respect to the species,
- Motivation: Thanks to strange evolutionary features not taken into account by the inference method, some species may exert a strong pull toward a biased estimated phylogeny,

• Method:

- Infer the phylogeny T with the whole species set,
- Remove species one at the time and infer a new tree *T_i* on the smaller species set,
- Quantify difference between T and T_i .

Feb. 08 21 / 32

• • • • • • • • • • • •

Species Leverage Index (SLI)

- Goal: Study the robustness of the tree with respect to the species,
- Motivation: Thanks to strange evolutionary features not taken into account by the inference method, some species may exert a strong pull toward a biased estimated phylogeny,

Method:

- Infer the phylogeny T with the whole species set,
- Remove species one at the time and infer a new tree *T_i* on the smaller species set,
- Quantify difference between *T* and *T_i*.

Feb. 08 21/32

Definition

Let:

- $\mathbf{X} = \left(\mathbf{X}^{(1)}, \dots, \mathbf{X}^{(s)}\right)'$ be the complete alignment,
- $\mathbf{X}^{(-i)} = \mathbf{X} \setminus \mathbf{X}^{(i)}$ all the species but species *i*,
- \widehat{T} the ML tree and associated parameters for **X**,
- $\widehat{T}^{(-i)}$ the tree \widehat{T} after pruning species *i*,
- $\widehat{T^{(-i)}}$ the ML tree and associated

The Species Leverage Index (SLI) of species *i* is:

 $SLI(i) = d(\widehat{T}^{(-i)}, \widehat{T^{(-i)}})$

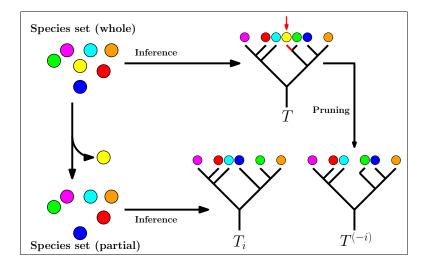
where d is any adapted distance .

Feb. 08 22 / 32

Definition

Let:

- $\mathbf{X} = \left(\mathbf{X}^{(1)}, \dots, \mathbf{X}^{(s)}\right)'$ be the complete alignment,
- $\mathbf{X}^{(-i)} = \mathbf{X} \setminus \mathbf{X}^{(i)}$ all the species but species *i*,
- \widehat{T} the ML tree and associated parameters for **X**,
- $\widehat{T}^{(-i)}$ the tree \widehat{T} after pruning species *i*,
- $\widehat{T^{(-i)}}$ the ML tree and associated

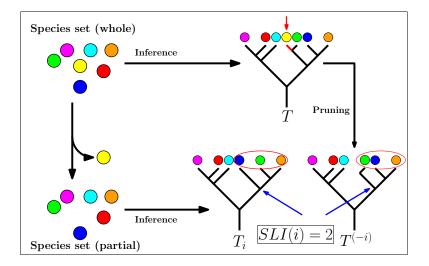

The Species Leverage Index (SLI) of species *i* is:

$$SLI(i) = d(\widehat{T}^{(-i)}, \widehat{T^{(-i)}})$$

where d is any adapted distance .

Feb. 08 22 / 32

Method



DQC

イロト イロト イヨト イヨト

Method

DQC

< ロト < 回 > < 回 > < 回 > < 回</p>

Nodes Leverage Index (NLI)

Definition

Node Leverage Index (NLI) of *A*: number of inferred trees in which the node is retrieved.

$$NLI(A) = \sum_{i=1}^{n} \mathbb{1}_{\widehat{T^{(-i)}}}(A)$$

Problems

- The taxa sets are different between \hat{T} , $\hat{T}^{(-i)}$ and $\hat{T}^{(-i)}$;
- The taxa sets are different between the $T^{(-i)}$ s;
- Some nodes naturally disappear when a taxon is removed;
- Find a convenient node mapping from \hat{T} to $\hat{T}^{(-i)}$ before comparing $\hat{T}^{(-i)}$ and $\widehat{T^{(-i)}}$.

Nodes Leverage Index (NLI)

Definition

Node Leverage Index (NLI) of *A*: number of inferred trees in which the node is retrieved.

$$NLI(A) = \sum_{i=1}^{n} \mathbb{1}_{\widehat{T^{(-i)}}}(A)$$

Problems

- The taxa sets are different between \hat{T} , $\hat{T}^{(-i)}$ and $\hat{T}^{(-i)}$;
- The taxa sets are different between the $T^{(-i)}$ s;
- Some nodes naturally disappear when a taxon is removed;
- Find a convenient node mapping from \hat{T} to $\hat{T}^{(-i)}$ before comparing $\hat{T}^{(-i)}$ and $\hat{T}^{(-i)}$.

Interpretation

- SLI: Low value: adding/removing the species from the dataset has (almost) impact on the tree;
 - High value: "rogue" species, adding/removing it greatly affects the tree.
- NLI: High value: stable nodes, highly resilient to taxon sampling;
 - Low value: weak nodes, highly sensitive to taxon sampling.

Strategy towards robustness

- Focus on rogues species: species with high SLI;
- Rank them in increasing SLI;
- Remove them one at the time until a stable tree is found.

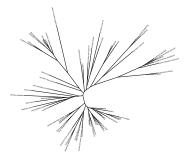
Feb. 08 25 / 32

• • • • • • • • • • • •

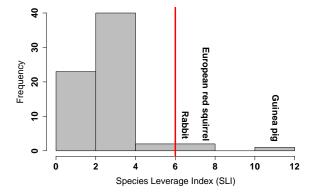
Interpretation

- SLI: Low value: adding/removing the species from the dataset has (almost) impact on the tree;
 - High value: "rogue" species, adding/removing it greatly affects the tree.
- NLI: High value: stable nodes, highly resilient to taxon sampling;
 - Low value: weak nodes, highly sensitive to taxon sampling.

Strategy towards robustness


- Focus on rogues species: species with high SLI;
- Rank them in increasing SLI;
- Remove them one at the time until a stable tree is found.

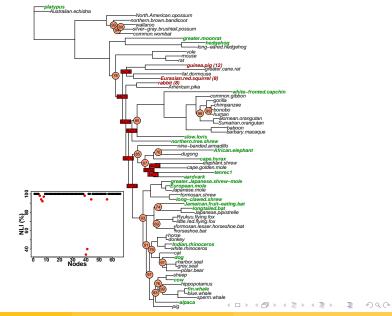
Feb. 08 25 / 32


• • • • • • • • • • • •

Data: Placental Mammal Phylogeny

- Mitochondrial genome of 68 mammals,
- Amino Acids sequences,
- Sequences are 3658 sites long,
- Phylogeny published in Nikaido et al. in 2003.

Species Leverage Index



590

< A


э.

Complete Phylogeny

M. Mariadassou (Université Paris Descartes) Species Leverage and Influence Function

Rogue Species

Two sources of uncertainties

- Outlier sites;
- Rogue species.

Two tools to detect them

- Influence functions;
- Species Leverage.

4 A 1

Two sources of uncertainties

- Outlier sites;
- Rogue species.

Two tools to detect them

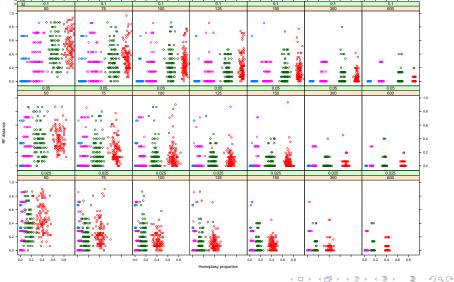
- Influence functions;
- Species Leverage.

Conclusions

- Bootstrap: global measure of uncertainty,
- SLI,NLI are local ones to pinpoint the sources of uncertainties,
- Decompose the "black box" of bootstrap values,

Perspectives

- Impact of the evolution model,
- Statical properties of SLI,NLI.


Add-on

 Homoplasy influence on accuracy

 00
 02
 04
 08
 00
 02
 04
 08

 01
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1

 75
 100
 125
 150

0.0 0.2 0.4 0.6 0.8

