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Introduction
Assigning taxonomic labels to DNA sequences and estimating a microbial abundance profile from high
throughput sequencing data is one of the main challenges in metagenomics, often referred to as taxonomic
binning (Kunin et al., 2008). Two main computational strategies have been proposed to perform this task:
(i) similarity-based approaches, where the DNA sequence is searched against a reference sequence database
with sequence alignment tools like BLAST (Huson et al., 2007) or TMAP (Homer et al., 2010), and (ii)
compositional approaches, where a machine learning model such as a naive Bayes (NB) classifier (Wang
et al., 2007) or a support vector machine (SVM, McHardy et al., 2006; Patil et al., 2012) is trained to
label the sequence based on the set of k-mers it contains. Since the taxonomic classification of a sequence
by compositional approaches is only based on the set of k-mers it contains, they offer significant gain in
terms of classification time over similarity-based approaches. Nevetheless, it seems that similarity-based
and compositional approaches achieve comparable performances in terms of classification accuracy (Parks
et al., 2011; Patil et al., 2012).

Compositional approaches must be trained on a set of sequences with known taxonomic labels, typically
obtained by sampling fragments from reference genomes. In the case of NB classifiers, explicit sampling
of fragments from reference genomes is not needed to train the model: instead, a global profile of k-mer
abundance from each reference genome is sufficient to estimate the parameters of the NB model, leading
to simple and fast implementations (Wang et al., 2007). On the other hand, in the case of SVM, an explicit
sampling of fragments from reference genomes to train the model based on the k-mer content of each
fragment is needed. For example, Patil et al. (2012) sampled approximately 10,000 fragments from 1768
genomes to train a structured SVM (based on a k-mer representation with k = 4, 5, 6), and reported an
accuracy competitive with similarity-based approaches.

Increasing the number of fragments sampled to train a SVM may improve its accuracy, and allow to in-
vestigate larger values of k. However it also raises computational challenges, as it involves machine learning
problems where a model must be trained from potentially millions or billions of training examples, each
represented by a vector in 109 dimensions for, e.g., k = 15. This is out of reach of most standard implemen-
tations of SVM. In this work, we investigate the potential of modern, large-scale SVM implementations for
taxonomic label assignment. We demonstrate in particular that increasing the number of fragments used to
train the SVM has a significant impact on the accuracy of the model, and allows to estimate models based
on longer k-mers. In this study, we evaluated tools for compositional read classification based on SVM Li-
blinear (Fan et al., 2008) and Vowpal Wabbit (Langford et al., 2007). The corresponding machine learning
problem is a multiclass classification learned on millions of examples represented in the feature space R4k

,
whose dimensionality exponentially grows with k.

Results
We implemented a multiclass SVM model for taxonomic label assigment based on two state-of-the-art
large-scale SVM implementations, SVM Liblinear (Fan et al., 2008) and Vowpal Wabbit (Langford et al.,
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Figure 1: Comparison between SVM and TMAP
on simulated shotgun data. This figure gives cor-
rect classification rate for two SVMs (red) trained
from fragments covering each reference genome with
a mean coverage of 0.1 (dotted line) and 1 (solid
line). Performances are reported as a function of k-
mer sizes and compared to the baseline value given by
alignment-based method TMAP (purple dashed line).

2007). For a given length of k-mers, each sequence x is represented by the vector φ(x) ∈ R4k

of counts of
k-mers it contains, and we estimate a linear SVM in this space. We considered a reference database with 356
complete genome sequences covering 52 bacterial species, and simulated a test set of 134,539 Roche 454
reads from a bronchoalveolar lavage model (Erb-Downward et al., 2011) with a mean length equal to 450
bp1. To train the SVM, we randomly sampled 450 bp fragments from each genome in order to cover each
genome with a mean coverage of 0.1 or 1. This led to a training set of about 200k fragments at coverage
0.1, and of about 2 millions fragments at coverage 1. We compared the performance of a multiclass SVM
trained on these two datasets, for different values of k, with the state-of-the-art TMAP alignment-based
method.

Figure 1 shows the performance of the different methods in terms of correct species-level classification
rate. We see that when the number of training fragments is large enough, SVM benefit from longer k-
mer size up to k = 11, the largest value we tested in this preliminary study. We see also that at this
level (corresponding to 411 ' 4.106 dimensions), increasing the training set size from 200k to 2 millions
examples increases the performance by about 30%. For k = 11 and 2 millions training examples, the
performance of the multiclass SVM is similar to TMAP, the similarity-based method. In terms of speed,
the best SVM was 22 times faster than TMAP and took 3 minutes to classify the 134k test sequences on a
single core. These first results demonstrate the potential of SVM-based methods with massive training set
for sequence classification in metagenomics.
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1A similar experiment involving reads of length 200 bp simulated with an Ion Torrent sequencing error model led to similar results.
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