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@ Prospective study: follow-up.

o Cross-sectional study: observation at a given time.

— Qur study: prospective design.
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@ Classical prospective GWAS - Nested case-control design

© Post-GWAS: transcriptomics in a prospective design

© Statistical approaches for post-GWAS
@ Gene by gene model
@ Latent last-stage model
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@ Classical prospective GWAS - Nested case-control design
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Cohort and nested case-control design
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@ Interests: relative risk estimation, prediction.

e Statistical methods: survival analysis model (in particular Cox):
P[Time | genomics, exposures]

— Take into account the over-representation of cases.
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© Post-GWAS: transcriptomics in a prospective design
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Carcinogenesis and transcription in peripheral blood
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The NOWAC cohort

Prospective nested case-control design

50,000
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The NOWAC cohort

Prospective nested case-control design . case
e: control J
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The NOWAC cohort

Prospective nested case-control design . case
e: control J
______________ -
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Data: for each case-control pair i,

e T;: Follow-up time.

o AG; = log G$3¢ — log G¢°"trel: Difference of gene expression at time 7
before diagnosis (25,000 genes).

o AFE;: Exposure of CC pair i at time T; before diagnosis.
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Nested case-control design

Alternative point of view
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Nested case-control design

Alternative point of view
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@ Measurements of gene expression between 0 and 6 years before diagnosis

@ Only one measurement by case-control pair.

@ Explore the changes in gene expression 6 years before diagnosis.
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Prospective GWAS and post-GWAS: a different
statistical point of view
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Prospective GWAS and post-GWAS: a different
statistical point of view

Prospective GWAS

P[T|G, E] with

e T': time to diagnosis
o FE: exposures

@ G: genomic data (constant over
time).

Genomics: risk factors for cancer

Goal: risk estimation and prediction.
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statistical point of view

Prospective GWAS

P[T|G, E] with

e T': time to diagnosis
o FE: exposures

@ G: genomic data (constant over
time).

Genomics: risk factors for cancer

Goal: risk estimation and prediction.

Post-GWAS

P[G|T,E] with

o T time to diagnosis
o E: exposures

e G: transcriptomic data (depend
onT)

Transcriptomics: biomarkers of
carcinogenesis

Goal: study of change in gene
expression during carcinogenesis.
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Cox model in post-GWAS.

o Cox (proportional hazard) model: A(t|G, E) = Ao(t) exp ({8, (G, E)))
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i CC pair

— The follow-up time disappears = simple logistic regression.
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Cox model in post-GWAS.

o Cox (proportional hazard) model: A(t|G, E) = Ao(t) exp ({8, (G, E)))
o Partial likelihood for nested CC:

L) =T] (1~ 0 €B.(AG.AE))) ™ + pen(s)

1 CC pair

— The follow-up time disappears = simple logistic regression.

e Stratified coefficients: B if Ty <to
{ Bz if T; >t

— Penalization selects the most differentially expressed genes in each strata.

e More generally: T ~ A\(t|G, E, B(T))
— Not directly interpretable.
< Association between gene expression and no-carcinogen exposures?

Slllllllllllg up

@ Survival analysis for nested CC: genes that discriminate cases and controls.

@ Our goal: genes that discriminate "long” and "short” follow-up times.
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© Statistical approaches for post-GWAS
@ Gene by gene model
@ Latent last-stage model
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Gene-by-gene model

For each gene
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Gene-by-gene model

For each gene Correlation (T, AGY)

@ Spearman test

+ multiple testing
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For each gene Correlation (T, AGY)

Spearman test
Linear model

+ multiple testing

" Hockey-stick”
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Linear model

+ multiple testing
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Correct for exposures
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Gene-by-gene model

For each gene

Correlation (T, AG,)

@ Spearman test

® Linear model + multiple testing
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Time to diagnosia ° o ...

Correct for exposures

AGi g = af + a]AE; + o(Tilag) +€ig

General model

AGi’g = ‘I’(TZ, AEZ|@Q) +€ig
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Correct for exposures

AGi g = af + a]AE; + o(Tilag) +€ig

General model
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Flexible e Cross-effect: cancer
driven by exposures
e Hierarchical testing:
pathways of genes ...
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Gene-by-gene model

For each gene

Correlation (T, AG,)

@ Spearman test

® Linear model + multiple testing

@ "Hockey-stick”

Time to diagnosia ° o ...

Correct for exposures

AGi g = af + a]AE; + o(Tilag) +€ig

General model

AGLQ = ‘I’(TZ, AEZ|@Q) +€ig

Flexible e Cross-effect: cancer
driven by exposures No account for individual
e Hierarchical testing: dynamics
pathways of genes ...
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Latent last-stage model

Multi-stage model of carcinogenesis

Initiation Promotion Diagnosis
: : : >» Time
Cancer
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Latent last-stage model

Multi-stage model of carcinogenesis

Initiation Promotion Diagnosis
: : : >» Time
\ )\ )
Y Y
Last stage (LS) Cancer

Multi-stage model and gene expression

o Last stage: genes involved in carcinogenesis over/under express.
@ Random last stage length.
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Multi-stage model and gene expression

o Last stage: genes involved in carcinogenesis over/under express.

@ Random last stage length.
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Multi-stage model and gene expression

o Last stage: genes involved in carcinogenesis over/under express.

@ Random last stage length.

Model 1 Model 2

Case 1 Case 2 Case 1 Case 2
G G G(1) G(1)
gene 1 gene 1 gene 1
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gene 2 gene 2 gene 2
/ gene 2 /
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Latent last-stage model

Multi-stage model of carcinogenesis

> Time

Initiation Promotion Diagnosis
1 1 1
T 1 1
\ )\ )
Y Y
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Multi-stage model and gene expression

o Last stage: genes involved in carcinogenesis over/under express.

@ Random last stage length.

Model 1 Model 2
Case 1 Case 2 Case 1 Case 2
G GO G(1) G(1)
gene 1 gene 1 gene 1
gene 1
gene 2 gene 2 gene 2
/ gene 2 /
== ~ ggne 3 ~ ggne 3 = gene 3 gene 3
Diag Diag Diag Diag
LS case 1 (Scase 2 LS case 1 (Scase 2.
— Screening program < Diagnosis from symptoms
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Statistical model 1
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Statistical model 1

DG(t) DG(t)
LS LS

1 \\}

LS—-T<O LS—-T=0

Gene expression

For each case-control pair ¢ and gene g:

AGY! = B9 + (B, AE) + B(LS; — T;)N(LS; > T;) + eiy
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Statistical model 1

e 3: DE before last
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Gene expression

For each case-control pair ¢ and gene g:
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1 \\}

LS—-T<O LS—-T=0

Gene expression

For each case-control pair ¢ and gene g:

AG) = B + (B],AE)+ B5(LS; —TH)W(LS; > T;) + €4

O Statistical appi hes to explore il ic procest 1st of October 2012 15 / 23




Statistical model 1

e [3: DE before last
DG(t) DG(t)
s s stage.
4 o [3{: Exposure effect.
— e 3§ # 0iif gene g is
involved in LS.
T —
LS—T<O0 LS—T=0
v

Gene expression

For each case-control pair ¢ and gene g:

AG‘;J = ﬁg + <5f7AEZ>+ﬁ§(LSZ—E)]J(LSZ >Tz) + €ig

O Statistical appi hes to explore il ic procest 1st of October 2012 15 / 23




Statistical model 1

e [3]: DE before last
DG(1) DG(1)
Ls Ls stage.
o [3]: Exposure effect.
e 39 # 0 iif gene g is
involved in LS.

1 \\}

LS—T<0 LS—T>0 @ Ejg ™~ N(O, 0'3)

Gene expression

For each case-control pair 7 and gene g:

AG) = B + (B],AE)+ B3(LS; — TH)W(LS; > T;) + €4
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Statistical model 1

e [3J: DE before last
DG(t) DG()
s LS stage.
e [3{: Exposure effect.
e (35 # 0iif gene g is
involved in LS.

1 \\}

2
LS—-T<O LS—-T>0 ) @ &g~ N(O, Ug).

Gene expression

For each case-control pair ¢ and gene g:

AGY! = B + (B, AE) + BI(LS; — T;)N(LS; > T;) + eiy

Last-stage length
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Statistical model 1

e [3J: DE before last

DG(t) DG()
—= — LS stage.
/ o [3{: Exposure effect.
— e (35 # 0iif gene g is
involved in LS.
LS—-T<O ! LS-T=>0 ! ) (*] Ei,g ~ N(O, U;)

Gene expression

For each case-control pair ¢ and gene g:

AG) = G5 + (B],AE)+ B(LS; —TH)W(LS; > T;) + €44

Last-stage length

' — (k,0) may depends on the exposures of the case.
el [(§= 14 et 1, 20)),
0= eXp(<T7 (la E;:ase)>)'

O Statistical appi hes to explore il ic procest 1st of October 2012 15 / 23




Parameter estimation

{ LS; ~T(k,0) with k =1+ exp((s, B2, 0 = exp((r, E*))

DG] =B, (1, AE;, (LS; = T1)*)) +€i g, €iyg ~ N(0,07)
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@ Starting point from an heuristic.
Q ™ iteration.
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@ Starting point from an heuristic.
Q ™ iteration.

0U) = (k) 70) L) )y ——>  Sample (LSZ-(j)’l,...,LSi(j)’N) from
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AN |

(BU+D g+ MLE from P ,[AG|AE, LSY)]
(kUFD 70+ MLE from P, ,[LSY)|, B T;]

o’

o é = Zj)burn—in @(J)
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Algorithm SEM

LS; ~T(k,0) with k=1+exp(k, ES*®)), 0 =exp((r, ES*))
AG? =<ﬂg7(17Ei7(LSi_E)*)>+Ei’g, € NN(O,O'g) J
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Algorithm SEM

LS; ~T(k,0) with k=1 +exp((s, ), 0 = exp((r, ESY)
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M
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Algorithm SEM

LS; ~T(k,0) with k=1+exp((k, E*)), 0= exp((r, EP*))
AG? =<ﬁg7(1aEi7(LSi_n)*)>+5i’g, ENN(O,O'Q)

Let ©6) = (k1) 7). B 5(0)) J

Simulated expectation

Eow [log Po[AG:, LS;]] = ZJ log Po[AG, LS;|Pew [LSi|AG;]
i=1YLS;

Sample NV repetitions of {LS\)};_1.,, from distribution Pge) [LS;|AG,].

Powu) [AG;|LS;] - Pewy [LS;]

Pow) [LSi|AG;]

Pou) [AG;]
oc HZ:I ]P@(j) [AG;] |LSi] . IP@(j) [LSl]
NKBY, (1, B, (LS; — Ti)*)), 0g) L(k;,0;) =T
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Maximization

log Po[AG;, LS;] = logPs - [AG;|LS;]] + log Py, - [LS;]
Thus

n N
(B9, 6 tD) = argmax Y (}V 3 (AGE — (By, (1, By, (LSY) — T»*»))

=1 {=1

where ¢ is the standard normal density and

(/{UH)7 T(j+1)) = arg max

n N )
> (}V M LSk = 1+ exp((r, Es), 0 = exp((r, E»))

=1 =1

where 1) is the gamma distribution density.

.
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Convergence of the algorithm on simulated data

Simulations

e n = 150 pairs, p = 2000 genes and py = 100 genes involved in the last stage.
e Draw f7, 9 from N (0, 1).

Draw (B3,...,3%) from N7(0,0.01), and gE°*! = ... = g? = 0.

Draw o from x?(3)

e F = binary variable (0/1)

e T = uniformly samples in (0, 800)

o LS generated with parameters 7 = ¢(3,0.5), k = ¢(2,0.5).

o AG generated from P , - o\[AG|LS, T, E].
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Two quantities of interests

Last-stage length estimation
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Comparison with gene-by-gene models

Three tests are compared: ROC curve

o F-test from LLS model with estimated LS
DGY = B9 + BYAE; + B2(LS; — T)* + €54

o F-test in linear model:

00 02 04 06 08 10

DGY = B0 + ByAE; + B2T; + €4 1
o F-test in hockey-stick model: | = e
DGZQ — 68 + /B;AEI + B; (Tz _ tO)* + Eirg 00 02 04 06 08 10
y FPR
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Comparison with gene-by-gene models

Three tests are compared: ROC curve

o F-test from LLS model with estimated LS
DGY = B9 + BYAE; + B2(LS; — T)* + €54

o F-test in linear model:
g9 _ 0 1 . 2, .
DGY = B0+ BLAE; + B2T; + €
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n — LS
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T T T T T T

DGZQ — 68 + /B;AEI + /BS(TZ _ tO)* + Ei,g 00 02 04 06 08 10

y FPR

@ F-test in hockey-stick model:

00 02 04 06 08 10

@ Slightly better sensitivity for LLS.
© data simulated according to LLS model — favorable situation.

@ LLS model provides additional information about individual dynamics.
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What comes next?

Is there signal in blood?
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What comes next?

Is there signal in blood?

o At time of diagnosis, a large number of differentially expressed genes in blood.

o Whole set of data available soon.

Choice of exposures to correct individual variations.
o PCA on an independent sample.

Stratification of cases:
o Stage of cancer (in situ, invasive, metastasic)

o Type of cancer (receptors,...)
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Conclusion

From GWAS to post-GWAS design:

o New goals: exploration of functional changes on transcriptomic data.
o Novel statistical approaches:

Prospective GWAS: P[T|G,E] + Post-GWAS: P[G|T, E]

Gene-by-gene model

o Flexible

¢ Inclusion of biological assumptions.

Latent last stage model

o Validated on simulated data

Require further developments to be applied on data:
¢ Choice of parametrization and relevant exposures.

< Account for dependence between genes.
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