## Novel statistical approaches to explore carcinogenic process on transcriptomic data from GWAS to post-GWAS

TICE (Transcriptomics In Cancer Epidemiology) NOWAC (Norwegian Women And Cancer)

Sandra Plancade, University of Tromso (Norway) Gregory Nuel, University Paris-Descartes Eiliv Lund, University of Tromso

1st of October 2012

イロト イポト イヨト イヨト

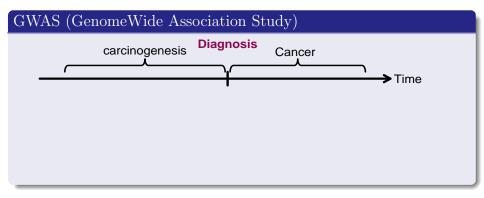
#### 1 Post-GWAS design

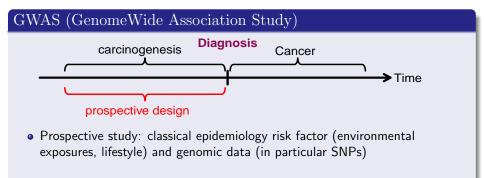
2 Exploration of functional changes on gene expression

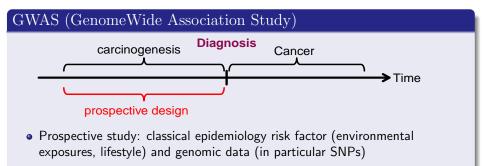
**3** Prospective GWAS and post-GWAS: a different statistical point of view

In Statistical approaches for post-GWAS:  $\mathbb{P}[G|E,T]$ 

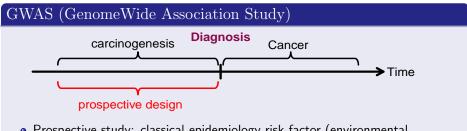
・ロト ・日ト ・ヨト ・ヨト







• Transcriptomic data (gene expression and methylation): at time of diagnosis



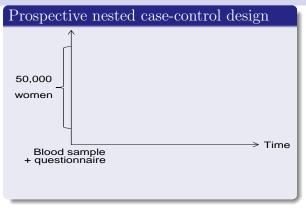
- Prospective study: classical epidemiology risk factor (environmental exposures, lifestyle) and genomic data (in particular SNPs)
- Transcriptomic data (gene expression and methylation): at time of diagnosis

#### Post-GWAS

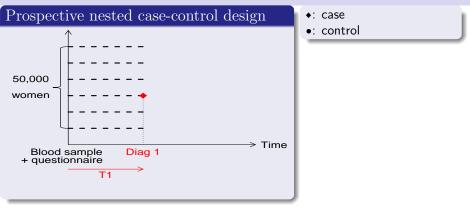
Transcriptomic data in a prospective nested CC (case-control) design:

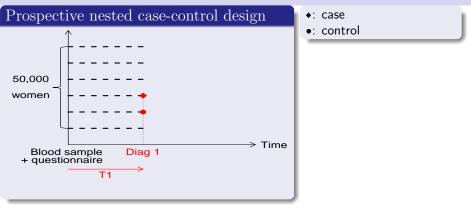
- Hybrid between the prospective and nested CC designs
- Main distinction with prospective GWAS :

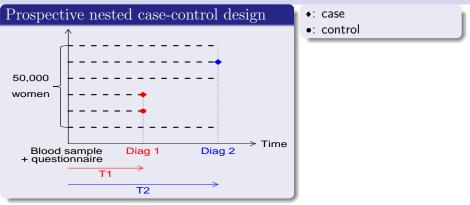
Transcriptomics change over carcinogenic process  $\neq$  SNPs are constant.

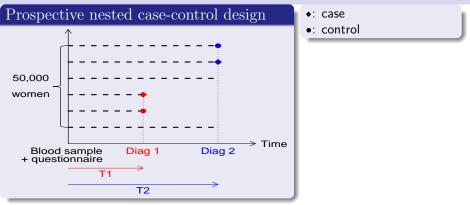


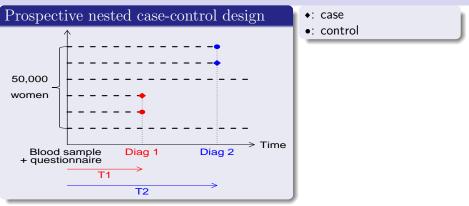
3.0

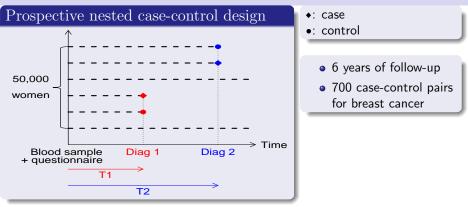


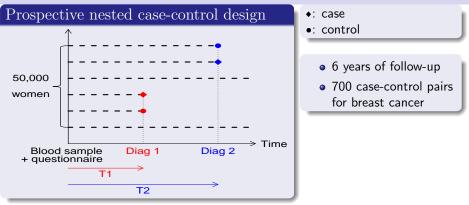












#### Data: for each case-control pair i,

- $T_i$ : Follow-up time.
- $\Delta G_i = \log G_i^{\text{case}} \log G_i^{\text{control}}$ : Difference of gene expression at time  $T_i$  before diagnosis (25,000 genes).
- $\Delta E_i$ : Exposure of CC pair *i* at time  $T_i$  before diagnosis.

## Prospective nested case-control design 6 years Time • 6 years of follow-up Diagn 700 case-control pairs for breast cancer 700 CC pairs

#### Data: for each case-control pair i,

- $T_i$ : Follow-up time.
- $\Delta G_i = \log G_i^{\text{case}} \log G_i^{\text{control}}$ : Difference of gene expression at time  $T_i$  before diagnosis (25,000 genes).
- $\Delta E_i$ : Exposure of CC pair *i* at time  $T_i$  before diagnosis.



#### 2 Exploration of functional changes on gene expression

3 Prospective GWAS and post-GWAS: a different statistical point of view

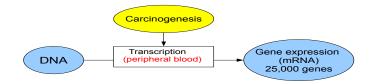
In Statistical approaches for post-GWAS:  $\mathbb{P}[G|E,T]$ 

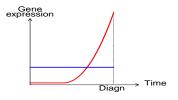
・ロト ・日ト ・ヨト ・ヨト



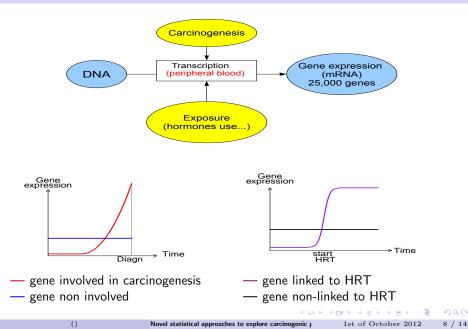
イロト イヨト イヨト イヨト

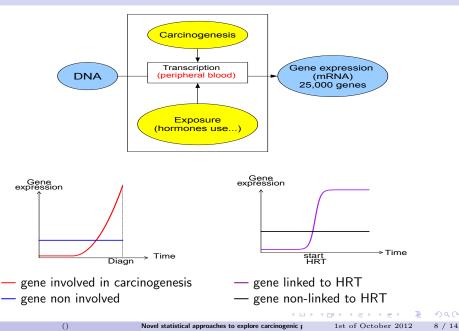
æ





- gene involved in carcinogenesis
- gene non involved





#### 1 Post-GWAS design

2 Exploration of functional changes on gene expression

#### <sup>(3)</sup> Prospective GWAS and post-GWAS: a different statistical point of view

#### • Statistical approaches for post-GWAS: $\mathbb{P}[G|E,T]$

・ロト ・日ト ・ヨト ・ヨト

Survival analysis models in prospective GWAS

 $\mathbb{P}[T|G,E] \quad \text{with} \quad$ 

- T: follow-up time
- E: exposures
- $\bullet$  G: genomic data

イロト イヨト イヨト イヨト

æ

Survival analysis models in prospective GWAS

 $\mathbb{P}[T|G,E] \quad \text{with} \quad$ 

- T: follow-up time
- E: exposures
- G: genomic data

Functional changes for post-GWAS

 $\mathbb{P}[G|T,E] \quad \text{with} \quad$ 

- T: follow-up time
- E: exposures
- G: transcriptomic data

Survival analysis models in prospective GWAS

 $\mathbb{P}[T|G,E] \quad \text{with} \quad$ 

- T: follow-up time
- E: exposures
- G: genomic data

#### Functional changes for post-GWAS

 $\mathbb{P}[G|T,E] \quad \text{with} \quad$ 

- T: follow-up time
- E: exposures
- G: transcriptomic data

#### What is different?

- Omic data are considered as:
  - Risk factor in prospective GWAS.
  - Biomarkers of carcinogenic process in post-GWAS.
- Different goals:
  - GWAS: relative risk estimation.
  - Post-GWAS: analysis of functional changes.

• Cox (proportional hazard) model:  $\lambda(t|G, E) = \lambda_0(t) \exp(\langle \beta, (G, E) \rangle)$ 

- Cox (proportional hazard) model:  $\lambda(t|G, E) = \lambda_0(t) \exp(\langle \beta, (G, E) \rangle)$
- Partial likelihood for nested CC:

$$L(\beta) = \prod_{i \text{ CC pair}} \left( 1 - \exp\left(\langle \beta, (\Delta G_i, \Delta E_i) \rangle\right) \right)^{-1} + \operatorname{pen}(\beta)$$

 $\hookrightarrow$  The follow-up time disappears = simple logistic regression.

- Cox (proportional hazard) model:  $\lambda(t|G, E) = \lambda_0(t) \exp(\langle \beta, (G, E) \rangle)$
- Partial likelihood for nested CC:

$$L(\beta) = \prod_{i \text{ CC pair}} \left(1 - \exp\left(\langle \beta, (\Delta G_i, \Delta E_i) \rangle\right)\right)^{-1} + \operatorname{pen}(\beta)$$

 $\hookrightarrow$  The follow-up time disappears = simple logistic regression.

• Stratified coefficients:

$$\beta = \begin{cases} \beta_1 & \text{if } T_i \leq t_0 \\ \beta_2 & \text{if } T_i > t_0 \end{cases}$$

물 제 문 제

- Cox (proportional hazard) model:  $\lambda(t|G, E) = \lambda_0(t) \exp(\langle \beta, (G, E) \rangle)$
- Partial likelihood for nested CC:

$$L(\beta) = \prod_{i \text{ CC pair}} \left(1 - \exp\left(\langle \beta, (\Delta G_i, \Delta E_i) \rangle\right)\right)^{-1} + \operatorname{pen}(\beta)$$

 $\hookrightarrow$  The follow-up time disappears = simple logistic regression.

• Stratified coefficients:

$$\beta = \begin{cases} \beta_1 & \text{if } T_i \leqslant t_0 \\ \beta_2 & \text{if } T_i > t_0 \end{cases}$$

 $\hookrightarrow$  Penalization selects the most differentially expressed genes in each strata.

- Cox (proportional hazard) model:  $\lambda(t|G, E) = \lambda_0(t) \exp(\langle \beta, (G, E) \rangle)$
- Partial likelihood for nested CC:

$$L(\beta) = \prod_{i \text{ CC pair}} \left(1 - \exp\left(\langle \beta, (\Delta G_i, \Delta E_i) \rangle\right)\right)^{-1} + \operatorname{pen}(\beta)$$

 $\hookrightarrow$  The follow-up time disappears = simple logistic regression.

• Stratified coefficients:

$$\beta = \begin{cases} \beta_1 & \text{if } T_i \leq t_0 \\ \beta_2 & \text{if } T_i > t_0 \end{cases}$$

 $\hookrightarrow$  Penalization selects the most differentially expressed genes in each strata.

• More generally:  $\lambda(t|G, E, T)$ :

イロト イポト イヨト イヨト 二日

• Cox (proportional hazard) model:  $\lambda(t|G, E) = \lambda_0(t) \exp(\langle \beta, (G, E) \rangle)$ • Partial likelihood for nested CC:

$$L(\beta) = \prod_{i \text{ CC pair}} \left( 1 - \exp\left(\langle \beta, (\Delta G_i, \Delta E_i) \rangle\right) \right)^{-1} + \operatorname{pen}(\beta)$$

 $\hookrightarrow$  The follow-up time disappears = simple logistic regression.

• Stratified coefficients:

$$\beta = \begin{cases} \beta_1 & \text{if } T_i \leq t_0 \\ \beta_2 & \text{if } T_i > t_0 \end{cases}$$

 $\hookrightarrow$  Penalization selects the most differentially expressed genes in each strata.

• More generally:  $\lambda(t|G, E, T)$ :  $\hookrightarrow$  Not directly interpretable.

イロト イポト イヨト イヨト

• Cox (proportional hazard) model:  $\lambda(t|G, E) = \lambda_0(t) \exp(\langle \beta, (G, E) \rangle)$ • Partial likelihood for nested CC:

$$L(\beta) = \prod_{i \text{ CC pair}} \left(1 - \exp\left(\langle \beta, (\Delta G_i, \Delta E_i) \rangle\right)\right)^{-1} + \operatorname{pen}(\beta)$$

 $\hookrightarrow$  The follow-up time disappears = simple logistic regression.

• Stratified coefficients:

$$\beta = \begin{cases} \beta_1 & \text{if } T_i \leq t_0 \\ \beta_2 & \text{if } T_i > t_0 \end{cases}$$

 $\hookrightarrow$  Penalization selects the most differentially expressed genes in each strata.

- More generally:  $\lambda(t|G, E, T)$ :
  - $\hookrightarrow$  Not directly interpretable.
  - $\hookrightarrow$  Association between gene expression and no-carcinogen exposures?

イロト イポト イヨト イヨト

• Cox (proportional hazard) model:  $\lambda(t|G, E) = \lambda_0(t) \exp(\langle \beta, (G, E) \rangle)$ • Partial likelihood for nested CC:

$$L(\beta) = \prod_{i \text{ CC pair}} \left(1 - \exp\left(\langle \beta, (\Delta G_i, \Delta E_i) \rangle\right)\right)^{-1} + \operatorname{pen}(\beta)$$

 $\hookrightarrow$  The follow-up time disappears = simple logistic regression.

• Stratified coefficients:

$$\beta = \begin{cases} \beta_1 & \text{if } T_i \leqslant t_0 \\ \beta_2 & \text{if } T_i > t_0 \end{cases}$$

 $\hookrightarrow$  Penalization selects the most differentially expressed genes in each strata.

- More generally:  $\lambda(t|G, E, T)$ :
  - $\hookrightarrow$  Not directly interpretable.
  - $\hookrightarrow$  Association between gene expression and no-carcinogen exposures?
- Summing up
  - Survival analysis for nested CC: detect genes that discriminate between cases and controls.
  - Our goal: detect genes that discriminate between "long" and "short" follow-up times.

1st of October 2012 11 / 14

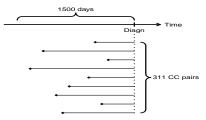
#### 1 Post-GWAS design

2 Exploration of functional changes on gene expression

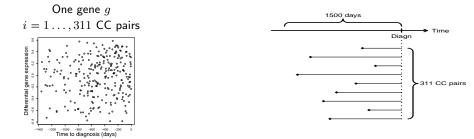
**3** Prospective GWAS and post-GWAS: a different statistical point of view

#### 4 Statistical approaches for post-GWAS: $\mathbb{P}[G|E,T]$

・ロト ・日ト ・ヨト ・ヨト

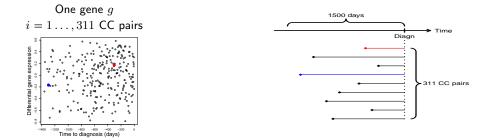


・ロト・日本・日本・日本・日本・日本



・ロト ・回ト ・ヨト ・ヨト

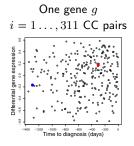
æ



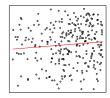
・ロト ・回ト ・ヨト ・ヨト

æ

13 / 14

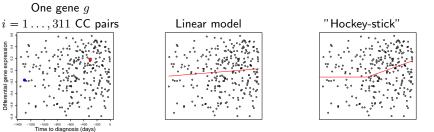


Linear model



$$\Delta G_{i,g} = \alpha_0^g + \alpha_1^g T_i + \varepsilon_{i,g}$$

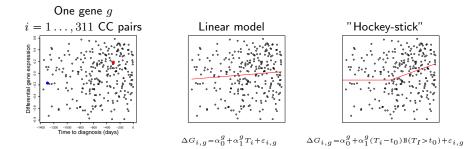
< □ > < □ > < □ > < □ > < Ξ > < Ξ > = Ξ



 $\Delta G_{i,q} = \alpha_0^g + \alpha_1^g T_i + \varepsilon_{i,q} \qquad \Delta G_{i,q} = \alpha_0^g + \alpha_1^g (T_i - t_0) \mathbb{1}(T_I > t_0) + \varepsilon_{i,q}$ 

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

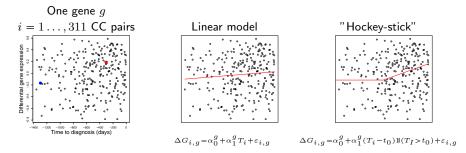
Э



• General model:  $\Delta G_{i,g} = f(T_i, \Delta E_i | \Theta_g) + \varepsilon_{i,g}$ .

→ Ξ → < Ξ →</p>

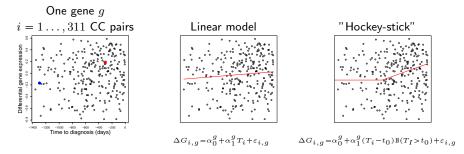
æ



- General model:  $\Delta G_{i,g} = f(T_i, \Delta E_i | \Theta_g) + \varepsilon_{i,g}$ .
- Testing time-effect for each gene + correction for multiple testing.

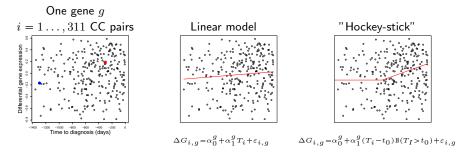
4 T N 4 A N

(B) (B)

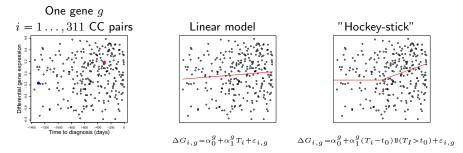


- General model:  $\Delta G_{i,g} = f(T_i, \Delta E_i | \Theta_g) + \varepsilon_{i,g}$ .
- Testing time-effect for each gene + correction for multiple testing.
- Controls used as reference.

(E) < E)</p>



- General model:  $\Delta G_{i,g} = f(T_i, \Delta E_i | \Theta_g) + \varepsilon_{i,g}$ .
- Testing time-effect for each gene + correction for multiple testing.
- Controls used as reference.
- Flexibility allows to include biological assumptions:
  - Cancer driven by exposures,
  - Paths of genes with hierarchical FDR, ...



- General model:  $\Delta G_{i,g} = f(T_i, \Delta E_i | \Theta_g) + \varepsilon_{i,g}$ .
- Testing time-effect for each gene + correction for multiple testing.
- Controls used as reference.
- Flexibility allows to include biological assumptions:
  - Cancer driven by exposures,
  - Paths of genes with hierarchical FDR, ...
- Latent variable model based on multistage model of carcinogenesis.

$$\Delta G_{i,g} = f(T_i, \Delta E_i, LS_i | \Theta_g) + \varepsilon_{i,g}$$

with  $LS_i$  the length of the last stage for case *i*.

• From prospective GWAS to post-GWAS.

Oifferent design:

genomics  $\rightarrow$  transcriptomics

Oifferent goals:

relative risk estimation  $\rightarrow$  exploration of functional changes

◊ Different statistical point of view:

 $\mathbb{P}[T|G,E] \to \mathbb{P}[G|T,E]$ 

<ロ> (四) (四) (三) (三) (三) (三)

- From prospective GWAS to post-GWAS.
  - ◊ Different design:

genomics  $\rightarrow$  transcriptomics

Oifferent goals:

relative risk estimation  $\rightarrow$  exploration of functional changes

◊ Different statistical point of view:

 $\mathbb{P}[T|G,E] \to \mathbb{P}[G|T,E]$ 

- Statistical approaches for analysis of functional changes on transcriptomic data:
  - Gene-by-gene model.
  - Latent variable model which accounts for individual dynamics.

- From prospective GWAS to post-GWAS.
  - Oifferent design:

genomics  $\rightarrow$  transcriptomics

◊ Different goals:

relative risk estimation  $\rightarrow$  exploration of functional changes

◊ Different statistical point of view:

 $\mathbb{P}[T|G,E] \to \mathbb{P}[G|T,E]$ 

- Statistical approaches for analysis of functional changes on transcriptomic data:
  - Gene-by-gene model.
  - Latent variable model which accounts for individual dynamics.
- What's next?

- From prospective GWAS to post-GWAS.
  - ◊ Different design:

genomics  $\rightarrow$  transcriptomics

Oifferent goals:

relative risk estimation  $\rightarrow$  exploration of functional changes

Different statistical point of view:

 $\mathbb{P}[T|G,E] \to \mathbb{P}[G|T,E]$ 

- Statistical approaches for analysis of functional changes on transcriptomic data:
  - Gene-by-gene model.
  - Latent variable model which accounts for individual dynamics.
- What's next?
  - Parametrization of the time effect.

- From prospective GWAS to post-GWAS.
  - ◊ Different design:

genomics  $\rightarrow$  transcriptomics

Oifferent goals:

relative risk estimation  $\rightarrow$  exploration of functional changes

Different statistical point of view:

 $\mathbb{P}[T|G,E] \to \mathbb{P}[G|T,E]$ 

- Statistical approaches for analysis of functional changes on transcriptomic data:
  - Gene-by-gene model.
  - Latent variable model which accounts for individual dynamics.
- What's next?
  - Parametrization of the time effect.
  - Determinate the exposures which affects gene expression

- From prospective GWAS to post-GWAS.
  - ◊ Different design:

genomics  $\rightarrow$  transcriptomics

Oifferent goals:

relative risk estimation  $\rightarrow$  exploration of functional changes

Different statistical point of view:

 $\mathbb{P}[T|G,E] \to \mathbb{P}[G|T,E]$ 

- Statistical approaches for analysis of functional changes on transcriptomic data:
  - ◊ Gene-by-gene model.
  - Latent variable model which accounts for individual dynamics.
- What's next?
  - Parametrization of the time effect.
  - Determinate the exposures which affects gene expression (huge subject!)

- From prospective GWAS to post-GWAS.
  - ◊ Different design:

genomics  $\rightarrow$  transcriptomics

Oifferent goals:

relative risk estimation  $\rightarrow$  exploration of functional changes

Different statistical point of view:

 $\mathbb{P}[T|G,E] \to \mathbb{P}[G|T,E]$ 

- Statistical approaches for analysis of functional changes on transcriptomic data:
  - ◊ Gene-by-gene model.
  - Latent variable model which accounts for individual dynamics.
- What's next?
  - Parametrization of the time effect.
  - Oterminate the exposures which affects gene expression (huge subject!)
  - Stratified with respect to the stages of cancer.

- From prospective GWAS to post-GWAS.
  - Oifferent design:

genomics  $\rightarrow$  transcriptomics

◊ Different goals:

relative risk estimation  $\rightarrow$  exploration of functional changes

Different statistical point of view:

 $\mathbb{P}[T|G,E] \to \mathbb{P}[G|T,E]$ 

- Statistical approaches for analysis of functional changes on transcriptomic data:
  - ◊ Gene-by-gene model.
  - Latent variable model which accounts for individual dynamics.
- What's next?
  - Parametrization of the time effect.
  - ◊ Determinate the exposures which affects gene expression (huge subject!)
  - Stratified with respect to the stages of cancer.
  - ◊ etc...

- From prospective GWAS to post-GWAS.
  - Oifferent design:

genomics  $\rightarrow$  transcriptomics

Oifferent goals:

relative risk estimation  $\rightarrow$  exploration of functional changes

Different statistical point of view:

 $\mathbb{P}[T|G,E] \to \mathbb{P}[G|T,E]$ 

- Statistical approaches for analysis of functional changes on transcriptomic data:
  - ◊ Gene-by-gene model.
  - Latent variable model which accounts for individual dynamics.
- What's next?
  - Parametrization of the time effect.
  - Oterminate the exposures which affects gene expression (huge subject!)
  - Stratified with respect to the stages of cancer.
  - ◊ etc...

#### Takk!

イロト イポト イヨト イヨト

14 / 14