Pointwise estimation of the density of regression errors by model selection

Sandra Plancade

MAP5 Université Paris 5

27 août 2008

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Framework

• Let (X_i, Y_i) be a sample from the regression framework :

$$Y_i = b(X_i) + \epsilon_i$$

with

- The (X_i) i.i.d. variables from density μ supported on [0, 1]. Moreover, μ is lower bounded by $m_0 > 0$ and upper bounded by $m_1 < \infty$.
- The (ϵ_i) are i.i.d. variables from density f supported on \mathbb{R} , indépendent from the (X_i) , with $\mathbb{E}[\epsilon_i] = 0$ and upper bounded by $\nu < \infty$.

Framework

• Let (X_i, Y_i) be a sample from the regression framework :

$$Y_i = b(X_i) + \epsilon_i$$

with

- The (X_i) i.i.d. variables from density μ supported on [0, 1]. Moreover, μ is lower bounded by $m_0 > 0$ and upper bounded by $m_1 < \infty$.
- The (ϵ_i) are i.i.d. variables from density f supported on \mathbb{R} , indépendent from the (X_i) , with $\mathbb{E}[\epsilon_i] = 0$ and upper bounded by $\nu < \infty$.
- This lecture propose an estimator \tilde{f} of f adapted to the pointwise risk :

$$\mathbb{E}[(\tilde{f}-f)^2(x_0)]$$

ション ふゆ アメリア イロア しょうくの

where x_0 is a fixed point in \mathbb{R} .

The (ε_i) are unobserved, so we construct proxies. More precisely, we observe a 2n-sample (X_i, Y_i)_{i=-n,...,n} that we split into two independent samples :

$$Z^{-} = \{(X_i, Y_i), i = -n, \dots, -1\}, Z^{+} = \{(X_i, Y_i), i = 1, \dots, n\}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

The (\epsilon_i) are unobserved, so we construct proxies. More precisely, we observe a 2n-sample (X_i, Y_i)_{i=-n,...,n} that we split into two independent samples :

$$Z^{-} = \{(X_i, Y_i), i = -n, \dots, -1\}, Z^{+} = \{(X_i, Y_i), i = 1, \dots, n\}$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ う へ つ ・

• From Z^- we build an estimator \widehat{b} of b

The (ε_i) are unobserved, so we construct proxies. More precisely, we observe a 2n-sample (X_i, Y_i)_{i=-n,...,n} that we split into two independent samples :

$$Z^{-} = \{(X_i, Y_i), i = -n, \dots, -1\}, Z^{+} = \{(X_i, Y_i), i = 1, \dots, n\}$$

- From Z^- we build an estimator \widehat{b} of b
- The residuals from the second sample :

$$\widehat{\epsilon}_i = Y_i - \widehat{b}(X_i), \ i = 1, \dots, n$$

are proxies from the (ϵ_i). Given Z^- , they are i.i.d. from density f^- .

The (\epsilon_i) are unobserved, so we construct proxies. More precisely, we observe a 2n-sample (X_i, Y_i)_{i=-n,...,n} that we split into two independent samples :

$$Z^{-} = \{(X_i, Y_i), i = -n, \dots, -1\}, Z^{+} = \{(X_i, Y_i), i = 1, \dots, n\}$$

- From Z^- we build an estimator \widehat{b} of b
- The residuals from the second sample :

$$\widehat{\epsilon}_i = Y_i - \widehat{b}(X_i) , \ i = 1, \dots, n$$

are proxies from the (ϵ_i) . Given Z^- , they are i.i.d. from density f^- . • Finally, by applying a density estimation procedure to the $(\hat{\epsilon}_i)$, we get an estimator \tilde{f} .

• $\mathbb{E}[(\tilde{f}-f)^2(x_0)] \le 2\{\mathbb{E}[(\tilde{f}-f^-)^2(x_0)] + \mathbb{E}[(f^--f)^2(x_0)]\}$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 … のへぐ

• $\mathbb{E}[(\tilde{f}-f)^2(x_0)] \le 2\{\mathbb{E}[(\tilde{f}-f^-)^2(x_0)] + \mathbb{E}[(f^--f)^2(x_0)]\}$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- $\mathbb{E}[(ilde{f} - f^-)^2(x_0)|Z^-]$ is a density estimation error

- $\mathbb{E}[(\tilde{f}-f)^2(x_0)] \le 2\{\mathbb{E}[(\tilde{f}-f^-)^2(x_0)] + \mathbb{E}[(f^--f)^2(x_0)]\}$
- $\mathbb{E}[(\widetilde{f} f^-)^2(x_0)|Z^-]$ is a density estimation error
- As $\widehat{\epsilon}_i = Y_i \widehat{b}(X_i) = \epsilon_i + (b \widehat{b})(X_i)$, we have :

$$f^{-}(x_{0}) = \int_{0}^{1} f(x_{0} - (b - \widehat{b})(x))\mu(x)dx$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ う へ つ ・

•
$$\mathbb{E}[(\tilde{f}-f)^2(x_0)] \le 2\{\mathbb{E}[(\tilde{f}-f^-)^2(x_0)] + \mathbb{E}[(f^--f)^2(x_0)]\}$$

- $\mathbb{E}[(\widetilde{f} f^-)^2(x_0)|Z^-]$ is a density estimation error
- As $\widehat{\epsilon}_i = Y_i \widehat{b}(X_i) = \epsilon_i + (b \widehat{b})(X_i)$, we have :

$$f^{-}(x_{0}) = \int_{0}^{1} f(x_{0} - (b - \hat{b})(x))\mu(x)dx$$

Then, if f is Lipschitz with constant L, we have :

$$\begin{split} \mathbb{E}[(f-f^{-})^{2}(x_{0})] &\leq & \mathbb{E}[\int_{0}^{1}(f(x_{0})-f(x_{0}-(b-\widehat{b})(x))^{2}\mu(x)dx] \\ &\leq & L^{2}\mathbb{E}[\int_{0}^{1}(b-\widehat{b})^{2}(x)\mu(x)dx] \end{split}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- $\mathbb{E}[(\tilde{f}-f)^2(x_0)] \le 2\{\mathbb{E}[(\tilde{f}-f^-)^2(x_0)] + \mathbb{E}[(f^--f)^2(x_0)]\}$
- $\mathbb{E}[(\widetilde{f} f^{-})^{2}(x_{0})|Z^{-}]$ is a density estimation error
- As $\widehat{\epsilon}_i = Y_i \widehat{b}(X_i) = \epsilon_i + (b \widehat{b})(X_i)$, we have :

$$f^{-}(x_{0}) = \int_{0}^{1} f(x_{0} - (b - \widehat{b})(x))\mu(x)dx$$

Then, if f is Lipschitz with constant L, we have :

$$\begin{split} \mathbb{E}[(f-f^{-})^{2}(x_{0})] &\leq & \mathbb{E}[\int_{0}^{1}(f(x_{0})-f(x_{0}-(b-\widehat{b})(x))^{2}\mu(x)dx] \\ &\leq & L^{2}\mathbb{E}[\int_{0}^{1}(b-\widehat{b})^{2}(x)\mu(x)dx] \end{split}$$

- So we need two estimators :
 - An estimator of the regression function with an upper bound for the integrated risk
 - An estimator of the density with an upper bound for the pointwise risk

I) Density estimation by pointwise model selection

Let (U_1, \ldots, U_n) i.i.d. from density g on \mathbb{R} with $\nu := ||g||_{\infty} < \infty$, and x_0 a fixed point in \mathbb{R} . We want to build an estimator of g by pointwise model selection.

- I.a) Principle of model selection
- I.b) Set of models
- I.c) Classes of regularity
- I.d) Estimation procedure
- I.e) Results

We consider a finite collection $\{S_m, m \in \mathcal{M}_n\}$ of linear subsets of $L^2(\mathbb{R})$.

We consider a finite collection $\{S_m, m \in \mathcal{M}_n\}$ of linear subsets of $L^2(\mathbb{R})$.

• For every $m \in \mathcal{M}_n$, given $\{\phi_\lambda, \lambda \in I_m\}$ an orthonormal basis of S_m , the orthogonal projection of g onto S_m is : $g_m = \sum_{\lambda \in I_m} \langle \phi_\lambda, g \rangle \phi_\lambda$. Then, we consider the projection estimator of g onto S_m :

$$\widehat{g}_m := \sum_{\lambda \in I_m} (rac{1}{n} \sum_{i=1}^n \phi_\lambda(U_i)) \phi_\lambda$$

We consider a finite collection $\{S_m, m \in \mathcal{M}_n\}$ of linear subsets of $L^2(\mathbb{R})$.

• For every $m \in \mathcal{M}_n$, given $\{\phi_\lambda, \lambda \in I_m\}$ an orthonormal basis of S_m , the orthogonal projection of g onto S_m is : $g_m = \sum_{\lambda \in I_m} \langle \phi_\lambda, g \rangle \phi_\lambda$. Then, we consider the projection estimator of g onto S_m :

$$\widehat{g}_m := \sum_{\lambda \in I_m} (\frac{1}{n} \sum_{i=1}^n \phi_\lambda(U_i)) \phi_\lambda$$

• We get a collection of estimators $\{\widehat{g}_m, m \in \mathcal{M}_n\}$, from which we would like to select the best one. For every $m \in \mathcal{M}_n$:

$$\mathbb{E}[(\widehat{g}_m - g)^2(x_0)] = \underbrace{(g - g_m)^2(x_0)}_{\text{bias}} + \underbrace{\mathbb{E}[(\widehat{g}_m - g_m)^2(x_0)]}_{\text{variance}}$$

We consider a finite collection $\{S_m, m \in \mathcal{M}_n\}$ of linear subsets of $L^2(\mathbb{R})$.

• For every $m \in \mathcal{M}_n$, given $\{\phi_\lambda, \lambda \in I_m\}$ an orthonormal basis of S_m , the orthogonal projection of g onto S_m is : $g_m = \sum_{\lambda \in I_m} \langle \phi_\lambda, g \rangle \phi_\lambda$. Then, we consider the projection estimator of g onto S_m :

$$\widehat{g}_m := \sum_{\lambda \in I_m} (\frac{1}{n} \sum_{i=1}^n \phi_\lambda(U_i)) \phi_\lambda$$

• We get a collection of estimators $\{\widehat{g}_m, m \in \mathcal{M}_n\}$, from which we would like to select the best one. For every $m \in \mathcal{M}_n$:

$$\mathbb{E}[(\widehat{g}_m - g)^2(x_0)] = \underbrace{(g - g_m)^2(x_0)}_{\text{bias}} + \underbrace{\mathbb{E}[(\widehat{g}_m - g_m)^2(x_0)]}_{\text{variance}}$$

- We estimate the bias term with help of \widehat{g}_m .
- We upper-bound the variance term by a deterministic term function of *m* and *n*, called the penalty.

I.b) Set of models

The models are built from the sine-cardinal function :

$$\phi(x) := \frac{\sin(\pi x)}{\pi x}$$

Fore every $m \in \mathbb{N}^*$, $k \in \mathbb{Z}$, we define :

$$\phi_{m,k} := \sqrt{m\phi(mx-k)}$$

$$S_m = Vect(\phi_{m,k}, k \in \mathbb{Z})$$

and we consider the collection of models $\mathcal{M}_n = \{S_m, m = 1, \dots, M_n\}$, with $M_n \leq n$.

I.c) Classes of regularity

For every $\beta > 0$, K > 0, let's define :

$$W(eta,K):=\{h:\mathbb{R} o\mathbb{R},\int h=1,\int_{\mathbb{R}}|h^*(\lambda)|^2\lambda^{2eta}d\lambda\leq L^2\}$$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 … のへぐ

where $h^*(\lambda) = \int_{\mathbb{R}} h(x) e^{i\lambda x} dx$.

I.c) Classes of regularity

For every $\beta > 0$, K > 0, let's define :

$$W(eta,K):=\{h:\mathbb{R} o\mathbb{R},\int h=1,\int_{\mathbb{R}}|h^*(\lambda)|^2\lambda^{2eta}d\lambda\leq L^2\}$$

where $h^*(\lambda) = \int_{\mathbb{R}} h(x) e^{i\lambda x} dx$.

Proposition

Let $\beta > 0$, K > 0, then :

$$(h - h_m)^2(x) \le Cm^{-(2\beta - 1)}, \ \forall h \in W(\beta, K), \forall x \in \mathbb{R}$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ う へ つ ・

for some constant C.

I.d) Estimation procedure

For every
$$m \le M_n$$
, $\widehat{g}_m = \sum_{k \in \mathbb{Z}} [(1/n) \sum_{i=1}^n \phi_{m,k}(U_i)] \phi_{m,k}$ and :
$$\mathbb{E}[(\widehat{g}_m - g)^2(x_0)] = (g - g_m)^2(x_0) + \mathbb{E}[(\widehat{g}_m - g_m)^2(x_0)]$$

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 臣 - のへで

I.d) Estimation procedure

For every
$$m \le M_n$$
, $\widehat{g}_m = \sum_{k \in \mathbb{Z}} [(1/n) \sum_{i=1}^n \phi_{m,k}(U_i)] \phi_{m,k}$ and :
 $\mathbb{E}[(\widehat{g}_m - g)^2(x_0)] = (g - g_m)^2(x_0) + \mathbb{E}[(\widehat{g}_m - g_m)^2(x_0)]$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 … のへぐ

• Upper-bound for the variance term : $\mathbb{E}[(\widehat{g}_m - g_m)^2(x_0)] \leq \frac{
u m}{n}$

I.d) Estimation procedure

For every
$$m \leq M_n$$
 , $\widehat{g}_m = \sum_{k \in \mathbb{Z}} [(1/n) \sum_{i=1}^n \phi_{m,k}(U_i)] \phi_{m,k}$ and :

$$\mathbb{E}[(\widehat{g}_m - g)^2(x_0)] = (g - g_m)^2(x_0) + \mathbb{E}[(\widehat{g}_m - g_m)^2(x_0)]$$

- Upper-bound for the variance term : $\mathbb{E}[(\widehat{g}_m g_m)^2(x_0)] \leq \frac{
 u m}{n}$
- The bias term is difficult to estimate, we replace it by :

$$\sup_{m\leq j\leq M_n}(g_j-g_m)^2(x_0)$$

Indeed, if $f \in W(\beta, L)$ with $\beta > 1/2$:

$$\begin{split} \sup_{m \le j \le M_n} (g_j - g_m)^2(x_0) &\le & 2\{ \sup_{m \le j \le M_n} (g_j - g)^2(x_0) + (g_m - g)^2(x_0) \} \\ &\le & 2C\{ \sup_{m \le j \le M_n} j^{-(2\beta - 1)} + m^{-(2\beta - 1)} \} \\ &= & C' m^{-(2\beta - 1)} \end{split}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

• The natural idea is to replace $(g_j-g_m)^2(x_0)$ by $(\widehat{g}_j-\widehat{g}_m)^2(x_0)$ but :

$$\mathbb{E}[(\hat{g}_{j} - \hat{g}_{m})^{2}(x_{0})] = \\ (g_{j} - g_{m})^{2}(x_{0}) + \underbrace{\mathbb{E}[((\hat{g}_{j} - \hat{g}_{m})(x_{0}) - (g_{j} - g_{m})(x_{0}))^{2}]}_{\leq \nu(j+m)/n}$$

• The natural idea is to replace $(g_j-g_m)^2(x_0)$ by $(\widehat{g}_j-\widehat{g}_m)^2(x_0)$ but :

$$\mathbb{E}[(\hat{g}_{j} - \hat{g}_{m})^{2}(x_{0})] = \\ (g_{j} - g_{m})^{2}(x_{0}) + \underbrace{\mathbb{E}[((\hat{g}_{j} - \hat{g}_{m})(x_{0}) - (g_{j} - g_{m})(x_{0}))^{2}]}_{\leq \nu(j+m)/n}$$

• We define for every $m \leq M_n$:

$$\widehat{Crit}(m) := \sup_{m \le j \le M_n} [(\widehat{g}_j - \widehat{g}_m)^2(x_0) - x_{j,m} \frac{\nu(j+m)}{n}] + x_m \frac{\nu m}{n} \\
\widehat{m} := \arg\min_{m=1,\dots,M_n} \widehat{Crit}(m)$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ う へ つ ・

where $(x_{j,m})$ and x_m are numbers of order $\ln(j+m)$ and $\ln m$. Then our estimator is $\hat{g}_{\hat{m}}$. • The natural idea is to replace $(g_j-g_m)^2(x_0)$ by $(\widehat{g}_j-\widehat{g}_m)^2(x_0)$ but :

$$\mathbb{E}[(\hat{g}_{j} - \hat{g}_{m})^{2}(x_{0})] = \\ (g_{j} - g_{m})^{2}(x_{0}) + \underbrace{\mathbb{E}[((\hat{g}_{j} - \hat{g}_{m})(x_{0}) - (g_{j} - g_{m})(x_{0}))^{2}]}_{\leq \nu(j+m)/n}$$

• We define for every $m \leq M_n$:

$$\widehat{Crit}(m) := \sup_{m \le j \le M_n} [(\widehat{g}_j - \widehat{g}_m)^2(x_0) - x_{j,m} \frac{\nu(j+m)}{n}] + x_m \frac{\nu m}{n} \\
\widehat{m} := \arg\min_{m=1,\dots,M_n} \widehat{Crit}(m)$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ う へ つ ・

where $(x_{j,m})$ and x_m are numbers of order $\ln(j+m)$ and $\ln m$. Then our estimator is $\hat{g}_{\hat{m}}$.

• **Remark** : ν can be replaced by an estimator $\hat{\nu}_n$.

Theorem If $g \in W(\beta, K)$ with $\beta > 1/2$ then :

$$\mathbb{E}[(\widehat{g}_{\widehat{m}}-g)^2(x_0)] \le C(\frac{n}{\ln n})^{-\frac{2\beta-1}{2\beta}} + \frac{C'}{n}$$

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ 三臣 … 釣�?

If $g \in W(\beta, K)$ with $\beta > 1/2$ then :

$$\mathbb{E}[(\hat{g}_{\widehat{m}} - g)^2(x_0)] \le C(\frac{n}{\ln n})^{-\frac{2\beta-1}{2\beta}} + \frac{C'}{n}$$

cf Butucea (2001)

- The minimax rate of convergence over W(eta,K) is $n^{-(2eta-1)/(2eta)}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- The adaptative minimax rate of convergence over the classes $\{W(\beta,K),\beta>1/2\}$ is $(n/\ln n)^{-(2\beta-1)/(2\beta)}$

Let's consider $(X_i, Y_i)_{i=-n,...,n}$ from the regression framework, and :

$$Z^{-} = \{(X_i, Y_i), i = -n, \dots, -1\}, Z^{+} = \{(X_i, Y_i), i = 1, \dots, n\}$$

(ロ)、(型)、(E)、(E)、 E、 の(の)

Let's consider $(X_i, Y_i)_{i=-n,...,n}$ from the regression framework, and :

$$Z^{-} = \{(X_i, Y_i), i = -n, \dots, -1\}, Z^{+} = \{(X_i, Y_i), i = 1, \dots, n\}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• Let \hat{b} be any estimator of b built from the sample Z^- .

Let's consider $(X_i, Y_i)_{i=-n,...,n}$ from the regression framework, and :

$$Z^{-} = \{(X_i, Y_i), i = -n, \dots, -1\}, Z^{+} = \{(X_i, Y_i), i = 1, \dots, n\}$$

- Let \widehat{b} be any estimator of b built from the sample Z^- .
- Let consider :

$$\widehat{\epsilon}_i = Y_i - \widehat{b}(X_i) , \ i = 1, \dots, n$$

ション ふゆ アメリア イロア しょうくの

the residuals from the sample Z^+ . Given Z^- , the $(\hat{\epsilon}_i)$ are i.i.d. of conditionnal density f^- , and $\nu^- := \|f^-\|_{\infty}$.

Let's consider $(X_i, Y_i)_{i=-n,...,n}$ from the regression framework, and :

$$Z^{-} = \{(X_i, Y_i), i = -n, \dots, -1\}, Z^{+} = \{(X_i, Y_i), i = 1, \dots, n\}$$

- Let \widehat{b} be any estimator of b built from the sample Z^- .
- Let consider :

$$\widehat{\epsilon}_i = Y_i - \widehat{b}(X_i) , \ i = 1, \dots, n$$

the residuals from the sample Z^+ . Given Z^- , the $(\hat{\epsilon}_i)$ are i.i.d. of conditionnal density f^- , and $\nu^- := \|f^-\|_{\infty}$.

• For every $m \leq M_n$:

$$\widehat{f_m^-} := \sum_{k \in \mathbb{Z}} ((1/n) \sum_{i=1}^n \phi_{m,k}(\widehat{\epsilon}_i)) \phi_{m,k}$$

$$\widehat{Crit}^-(m) = \sup_{m \le j \le M_n} [(\widehat{f_j^-} - \widehat{f_m^-})^2(x_0) - x_{j,m} \frac{\nu^-(j+m)}{n}] + x_m \frac{\nu^- m}{n}$$

$$\widehat{m} = \arg\min_{m=1,\dots,M_n} \widehat{Crit}^-(m)$$

and our estimator of f is $\tilde{f} := \hat{f}_{\widehat{m}}^-$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

If $f \in W(\beta, K)$ with $\beta > 3/2$:

$$\mathbb{E}[(\tilde{f} - f)^{2}(x_{0})] \leq C(\frac{n}{\ln n})^{-\frac{2\beta-1}{2\beta}} + C'\mathbb{E}[\|\hat{b} - b\|_{\mu}^{2}]$$

◆□ > < 圖 > < 圖 > < 圖 > < 圖 > < ■ < < ○ < ○ </p>

If $f \in W(\beta, K)$ with $\beta > 3/2$:

$$\mathbb{E}[(\tilde{f} - f)^{2}(x_{0})] \leq C(\frac{n}{\ln n})^{-\frac{2\beta-1}{2\beta}} + C'\mathbb{E}[\|\hat{b} - b\|_{\mu}^{2}]$$

Proof : $\mathbb{E}[(\tilde{f} - f)^2(x_0)] \le 2\{\mathbb{E}[(\tilde{f} - f^-)^2(x_0)] + \mathbb{E}[(f^- - f)^2(x_0)]\}$

うつん 川川 スポット エリット ふしゃ

• $\mathbb{E}[(\tilde{f} - f^{-})^{2}(x_{0})|Z^{-}] \leq C(\frac{n}{\ln n})^{-\frac{2\beta-1}{2\beta}} + \frac{C'}{n}$ $\Rightarrow \mathbb{E}[(\tilde{f} - f^{-})^{2}(x_{0})] \leq C''(\frac{n}{\ln n})^{-\frac{2\beta-1}{2\beta}}$

• $\mathbb{E}[(f^- - f)^2(x_0)] \le \mathbb{E}[\|\widehat{b} - b\|_{\mu}^2]$

If $f \in W(\beta, K)$ with $\beta > 3/2$:

$$\mathbb{E}[(\tilde{f}-f)^2(x_0)] \le C(\frac{n}{\ln n})^{-\frac{2\beta-1}{2\beta}} + C'\mathbb{E}[\|\hat{b}-b\|_{\mu}^2]$$

Proof : $\mathbb{E}[(\tilde{f} - f)^2(x_0)] \le 2\{\mathbb{E}[(\tilde{f} - f^-)^2(x_0)] + \mathbb{E}[(f^- - f)^2(x_0)]\}$

•
$$\mathbb{E}[(\tilde{f} - f^{-})^{2}(x_{0})|Z^{-}] \leq C(\frac{n}{\ln n})^{-\frac{2\beta-1}{2\beta}} + \frac{C'}{n}$$

 $\Rightarrow \mathbb{E}[(\tilde{f} - f^{-})^{2}(x_{0})] \leq C''(\frac{n}{\ln n})^{-\frac{2\beta-1}{2\beta}}$

•
$$\mathbb{E}[(f^- - f)^2(x_0)] \le \mathbb{E}[\|\widehat{b} - b\|_{\mu}^2]$$

- Consequence If we consider an adaptative estimator for b (cf Baraud, 2001), the rate of convergence for \tilde{f} is the maximum of :

- the minimax rate of convergence of b.

- the minimax rate of convergence of f is the sample (ϵ_i) was observed.

Bibliography

- Y. Baraud, 'Model selection for regression on a random design', 2001, ESAIM.
- B. Laurent, C Ludena, C Prieur, 'Adaptative estimation of linear functionnals by model selection', 2007, ArXiv.
- C. Butucea, 'Exact adaptative pointwise estimation on Sobolev classes of densities', 2001, ESAIM.