Pointwise estimation of the density of regression errors by model selection

Sandra Plancade
MAP5 Université Paris 5

27 août 2008

Framework

- Let $\left(X_{i}, Y_{i}\right)$ be a sample from the regression framework:

$$
Y_{i}=b\left(X_{i}\right)+\epsilon_{i}
$$

with

- The $\left(X_{i}\right)$ i.i.d. variables from density μ supported on $[0,1]$. Moreover, μ is lower bounded by $m_{0}>0$ and upper bounded by $m_{1}<\infty$.
- The $\left(\epsilon_{i}\right)$ are i.i.d. variables from density f supported on \mathbb{R}, indépendent from the (X_{i}), with $\mathbb{E}\left[\epsilon_{i}\right]=0$ and upper bounded by $\nu<\infty$.

Framework

- Let $\left(X_{i}, Y_{i}\right)$ be a sample from the regression framework:

$$
Y_{i}=b\left(X_{i}\right)+\epsilon_{i}
$$

with

- The $\left(X_{i}\right)$ i.i.d. variables from density μ supported on $[0,1]$. Moreover, μ is lower bounded by $m_{0}>0$ and upper bounded by $m_{1}<\infty$.
- The $\left(\epsilon_{i}\right)$ are i.i.d. variables from density f supported on \mathbb{R}, indépendent from the (X_{i}), with $\mathbb{E}\left[\epsilon_{i}\right]=0$ and upper bounded by $\nu<\infty$.
- This lecture propose an estimator \tilde{f} of f adapted to the pointwise risk :

$$
\mathbb{E}\left[(\tilde{f}-f)^{2}\left(x_{0}\right)\right]
$$

where x_{0} is a fixed point in \mathbb{R}.

Principle of error estimation

- The $\left(\epsilon_{i}\right)$ are unobserved, so we construct proxies. More precisely, we observe a $2 n$-sample $\left(X_{i}, Y_{i}\right)_{i=-n, \ldots, n}$ that we split into two independent samples:

$$
Z^{-}=\left\{\left(X_{i}, Y_{i}\right), i=-n, \ldots,-1\right\}, Z^{+}=\left\{\left(X_{i}, Y_{i}\right), i=1, \ldots, n\right\}
$$

Principle of error estimation

- The $\left(\epsilon_{i}\right)$ are unobserved, so we construct proxies. More precisely, we observe a $2 n$-sample $\left(X_{i}, Y_{i}\right)_{i=-n, \ldots, n}$ that we split into two independent samples:

$$
Z^{-}=\left\{\left(X_{i}, Y_{i}\right), i=-n, \ldots,-1\right\}, Z^{+}=\left\{\left(X_{i}, Y_{i}\right), i=1, \ldots, n\right\}
$$

- From Z^{-}we build an estimator \hat{b} of b

Principle of error estimation

- The $\left(\epsilon_{i}\right)$ are unobserved, so we construct proxies. More precisely, we observe a $2 n$-sample $\left(X_{i}, Y_{i}\right)_{i=-n, \ldots, n}$ that we split into two independent samples:

$$
Z^{-}=\left\{\left(X_{i}, Y_{i}\right), i=-n, \ldots,-1\right\}, Z^{+}=\left\{\left(X_{i}, Y_{i}\right), i=1, \ldots, n\right\}
$$

- From Z^{-}we build an estimator \hat{b} of b
- The residuals from the second sample :

$$
\widehat{\epsilon}_{i}=Y_{i}-\widehat{b}\left(X_{i}\right), i=1, \ldots, n
$$

are proxies from the $\left(\epsilon_{i}\right)$. Given Z^{-}, they are i.i.d. from density f^{-}.

Principle of error estimation

- The $\left(\epsilon_{i}\right)$ are unobserved, so we construct proxies. More precisely, we observe a $2 n$-sample $\left(X_{i}, Y_{i}\right)_{i=-n, \ldots, n}$ that we split into two independent samples:

$$
Z^{-}=\left\{\left(X_{i}, Y_{i}\right), i=-n, \ldots,-1\right\}, Z^{+}=\left\{\left(X_{i}, Y_{i}\right), i=1, \ldots, n\right\}
$$

- From Z^{-}we build an estimator \hat{b} of b
- The residuals from the second sample :

$$
\widehat{\epsilon}_{i}=Y_{i}-\widehat{b}\left(X_{i}\right), i=1, \ldots, n
$$

are proxies from the $\left(\epsilon_{i}\right)$. Given Z^{-}, they are i.i.d. from density f^{-}.

- Finally, by applying a density estimation procedure to the ($\widehat{\epsilon}_{i}$), we get an estimator \dot{f}.

The pointwise risk

- $\mathbb{E}\left[(\tilde{f}-f)^{2}\left(x_{0}\right)\right] \leq 2\left\{\mathbb{E}\left[\left(\tilde{f}-f^{-}\right)^{2}\left(x_{0}\right)\right]+\mathbb{E}\left[\left(f^{-}-f\right)^{2}\left(x_{0}\right)\right]\right\}$

The pointwise risk

- $\mathbb{E}\left[(\tilde{f}-f)^{2}\left(x_{0}\right)\right] \leq 2\left\{\mathbb{E}\left[\left(\tilde{f}-f^{-}\right)^{2}\left(x_{0}\right)\right]+\mathbb{E}\left[\left(f^{-}-f\right)^{2}\left(x_{0}\right)\right]\right\}$
- $\mathbb{E}\left[\left(\tilde{f}-f^{-}\right)^{2}\left(x_{0}\right) \mid Z^{-}\right]$is a density estimation error

The pointwise risk

- $\mathbb{E}\left[(\tilde{f}-f)^{2}\left(x_{0}\right)\right] \leq 2\left\{\mathbb{E}\left[\left(\tilde{f}-f^{-}\right)^{2}\left(x_{0}\right)\right]+\mathbb{E}\left[\left(f^{-}-f\right)^{2}\left(x_{0}\right)\right]\right\}$
- $\mathbb{E}\left[\left(\tilde{f}-f^{-}\right)^{2}\left(x_{0}\right) \mid Z^{-}\right]$is a density estimation error
- As $\widehat{\epsilon}_{i}=Y_{i}-\widehat{b}\left(X_{i}\right)=\epsilon_{i}+(b-\widehat{b})\left(X_{i}\right)$, we have :

$$
f^{-}\left(x_{0}\right)=\int_{0}^{1} f\left(x_{0}-(b-\widehat{b})(x)\right) \mu(x) d x
$$

The pointwise risk

- $\mathbb{E}\left[(\tilde{f}-f)^{2}\left(x_{0}\right)\right] \leq 2\left\{\mathbb{E}\left[\left(\tilde{f}-f^{-}\right)^{2}\left(x_{0}\right)\right]+\mathbb{E}\left[\left(f^{-}-f\right)^{2}\left(x_{0}\right)\right]\right\}$
- $\mathbb{E}\left[\left(\tilde{f}-f^{-}\right)^{2}\left(x_{0}\right) \mid Z^{-}\right]$is a density estimation error
- As $\widehat{\epsilon}_{i}=Y_{i}-\widehat{b}\left(X_{i}\right)=\epsilon_{i}+(b-\widehat{b})\left(X_{i}\right)$, we have :

$$
f^{-}\left(x_{0}\right)=\int_{0}^{1} f\left(x_{0}-(b-\widehat{b})(x)\right) \mu(x) d x
$$

Then, if f is Lipschitz with constant L, we have :

$$
\begin{aligned}
\mathbb{E}\left[\left(f-f^{-}\right)^{2}\left(x_{0}\right)\right] & \leq \mathbb{E}\left[\int_{0}^{1}\left(f\left(x_{0}\right)-f\left(x_{0}-(b-\widehat{b})(x)\right)^{2} \mu(x) d x\right]\right. \\
& \leq L^{2} \mathbb{E}\left[\int_{0}^{1}(b-\widehat{b})^{2}(x) \mu(x) d x\right]
\end{aligned}
$$

The pointwise risk

- $\mathbb{E}\left[(\tilde{f}-f)^{2}\left(x_{0}\right)\right] \leq 2\left\{\mathbb{E}\left[\left(\tilde{f}-f^{-}\right)^{2}\left(x_{0}\right)\right]+\mathbb{E}\left[\left(f^{-}-f\right)^{2}\left(x_{0}\right)\right]\right\}$
- $\mathbb{E}\left[\left(\tilde{f}-f^{-}\right)^{2}\left(x_{0}\right) \mid Z^{-}\right]$is a density estimation error
- As $\widehat{\epsilon}_{i}=Y_{i}-\widehat{b}\left(X_{i}\right)=\epsilon_{i}+(b-\widehat{b})\left(X_{i}\right)$, we have :

$$
f^{-}\left(x_{0}\right)=\int_{0}^{1} f\left(x_{0}-(b-\widehat{b})(x)\right) \mu(x) d x
$$

Then, if f is Lipschitz with constant L, we have :

$$
\begin{aligned}
\mathbb{E}\left[\left(f-f^{-}\right)^{2}\left(x_{0}\right)\right] & \leq \mathbb{E}\left[\int_{0}^{1}\left(f\left(x_{0}\right)-f\left(x_{0}-(b-\widehat{b})(x)\right)^{2} \mu(x) d x\right]\right. \\
& \leq L^{2} \mathbb{E}\left[\int_{0}^{1}(b-\widehat{b})^{2}(x) \mu(x) d x\right]
\end{aligned}
$$

- So we need two estimators :
- An estimator of the regression function with an upper bound for the integrated risk
- An estimator of the density with an upper bound for the pointwise risk

I) Density estimation by pointwise model selection

Let $\left(U_{1}, \ldots, U_{n}\right)$ i.i.d. from density g on \mathbb{R} with $\nu:=\|g\|_{\infty}<\infty$, and x_{0} a fixed point in \mathbb{R}. We want to build an estimator of g by pointwise model selection.
I.a) Principle of model selection
I.b) Set of models
I.c) Classes of regularity
I.d) Estimation procedure
I.e) Results

I.a) Principle of model selection

We consider a finite collection $\left\{S_{m}, m \in \mathcal{M}_{n}\right\}$ of linear subsets of $L^{2}(\mathbb{R})$.

I.a) Principle of model selection

We consider a finite collection $\left\{S_{m}, m \in \mathcal{M}_{n}\right\}$ of linear subsets of $L^{2}(\mathbb{R})$.

- For every $m \in \mathcal{M}_{n}$, given $\left\{\phi_{\lambda}, \lambda \in I_{m}\right\}$ an orthonormal basis of S_{m}, the orthogonal projection of g onto S_{m} is: $g_{m}=\sum_{\lambda \in I_{m}}\left\langle\phi_{\lambda}, g\right\rangle \phi_{\lambda}$. Then, we consider the projection estimator of g onto S_{m} :

$$
\widehat{g}_{m}:=\sum_{\lambda \in I_{m}}\left(\frac{1}{n} \sum_{i=1}^{n} \phi_{\lambda}\left(U_{i}\right)\right) \phi_{\lambda}
$$

I.a) Principle of model selection

We consider a finite collection $\left\{S_{m}, m \in \mathcal{M}_{n}\right\}$ of linear subsets of $L^{2}(\mathbb{R})$.

- For every $m \in \mathcal{M}_{n}$, given $\left\{\phi_{\lambda}, \lambda \in I_{m}\right\}$ an orthonormal basis of S_{m}, the orthogonal projection of g onto S_{m} is : $g_{m}=\sum_{\lambda \in I_{m}}\left\langle\phi_{\lambda}, g\right\rangle \phi_{\lambda}$. Then, we consider the projection estimator of g onto S_{m} :

$$
\widehat{g}_{m}:=\sum_{\lambda \in I_{m}}\left(\frac{1}{n} \sum_{i=1}^{n} \phi_{\lambda}\left(U_{i}\right)\right) \phi_{\lambda}
$$

- We get a collection of estimators $\left\{\widehat{g}_{m}, m \in \mathcal{M}_{n}\right\}$, from which we would like to select the best one. For every $m \in \mathcal{M}_{n}$:

$$
\mathbb{E}\left[\left(\widehat{g}_{m}-g\right)^{2}\left(x_{0}\right)\right]=\underbrace{\left(g-g_{m}\right)^{2}\left(x_{0}\right)}_{\text {bias }}+\underbrace{\mathbb{E}\left[\left(\widehat{g}_{m}-g_{m}\right)^{2}\left(x_{0}\right)\right]}_{\text {variance }}
$$

I.a) Principle of model selection

We consider a finite collection $\left\{S_{m}, m \in \mathcal{M}_{n}\right\}$ of linear subsets of $L^{2}(\mathbb{R})$.

- For every $m \in \mathcal{M}_{n}$, given $\left\{\phi_{\lambda}, \lambda \in I_{m}\right\}$ an orthonormal basis of S_{m}, the orthogonal projection of g onto S_{m} is: $g_{m}=\sum_{\lambda \in I_{m}}\left\langle\phi_{\lambda}, g\right\rangle \phi_{\lambda}$. Then, we consider the projection estimator of g onto S_{m} :

$$
\widehat{g}_{m}:=\sum_{\lambda \in I_{m}}\left(\frac{1}{n} \sum_{i=1}^{n} \phi_{\lambda}\left(U_{i}\right)\right) \phi_{\lambda}
$$

- We get a collection of estimators $\left\{\widehat{g}_{m}, m \in \mathcal{M}_{n}\right\}$, from which we would like to select the best one. For every $m \in \mathcal{M}_{n}$:

$$
\mathbb{E}\left[\left(\widehat{g}_{m}-g\right)^{2}\left(x_{0}\right)\right]=\underbrace{\left(g-g_{m}\right)^{2}\left(x_{0}\right)}_{\text {bias }}+\underbrace{\mathbb{E}\left[\left(\widehat{g}_{m}-g_{m}\right)^{2}\left(x_{0}\right)\right]}_{\text {variance }}
$$

- We estimate the bias term with help of \widehat{g}_{m}.
- We upper-bound the variance term by a deterministic term function of m and n, called the penalty.

I.b) Set of models

The models are built from the sine-cardinal function :

$$
\phi(x):=\frac{\sin (\pi x)}{\pi x}
$$

Fore every $m \in \mathbb{N}^{*}, k \in \mathbb{Z}$, we define :

$$
\begin{gathered}
\phi_{m, k}:=\sqrt{m} \phi(m x-k) \\
S_{m}=\operatorname{Vect}\left(\phi_{m, k}, k \in \mathbb{Z}\right)
\end{gathered}
$$

and we consider the collection of models $\mathcal{M}_{n}=\left\{S_{m}, m=1, \ldots, M_{n}\right\}$, with $M_{n} \leq n$.

I.c) Classes of regularity

For every $\beta>0, K>0$, let's define :

$$
W(\beta, K):=\left\{h: \mathbb{R} \rightarrow \mathbb{R}, \int h=1, \int_{\mathbb{R}}\left|h^{*}(\lambda)\right|^{2} \lambda^{2 \beta} d \lambda \leq L^{2}\right\}
$$

where $h^{*}(\lambda)=\int_{\mathbb{R}} h(x) e^{i \lambda x} d x$.

I.c) Classes of regularity

For every $\beta>0, K>0$, let's define :

$$
W(\beta, K):=\left\{h: \mathbb{R} \rightarrow \mathbb{R}, \int h=1, \int_{\mathbb{R}}\left|h^{*}(\lambda)\right|^{2} \lambda^{2 \beta} d \lambda \leq L^{2}\right\}
$$

where $h^{*}(\lambda)=\int_{\mathbb{R}} h(x) e^{i \lambda x} d x$.
Proposition
Let $\beta>0, K>0$, then :

$$
\left(h-h_{m}\right)^{2}(x) \leq C m^{-(2 \beta-1)}, \forall h \in W(\beta, K), \forall x \in \mathbb{R}
$$

for some constant C.

I.d) Estimation procedure

For every $m \leq M_{n}, \widehat{g}_{m}=\sum_{k \in \mathbb{Z}}\left[(1 / n) \sum_{i=1}^{n} \phi_{m, k}\left(U_{i}\right)\right] \phi_{m, k}$ and :

$$
\mathbb{E}\left[\left(\widehat{g}_{m}-g\right)^{2}\left(x_{0}\right)\right]=\left(g-g_{m}\right)^{2}\left(x_{0}\right)+\mathbb{E}\left[\left(\widehat{g}_{m}-g_{m}\right)^{2}\left(x_{0}\right)\right]
$$

I.d) Estimation procedure

For every $m \leq M_{n}, \widehat{g}_{m}=\sum_{k \in \mathbb{Z}}\left[(1 / n) \sum_{i=1}^{n} \phi_{m, k}\left(U_{i}\right)\right] \phi_{m, k}$ and :

$$
\mathbb{E}\left[\left(\widehat{g}_{m}-g\right)^{2}\left(x_{0}\right)\right]=\left(g-g_{m}\right)^{2}\left(x_{0}\right)+\mathbb{E}\left[\left(\widehat{g}_{m}-g_{m}\right)^{2}\left(x_{0}\right)\right]
$$

- Upper-bound for the variance term : $\mathbb{E}\left[\left(\widehat{g}_{m}-g_{m}\right)^{2}\left(x_{0}\right)\right] \leq \frac{\nu m}{n}$

I.d) Estimation procedure

For every $m \leq M_{n}, \widehat{g}_{m}=\sum_{k \in \mathbb{Z}}\left[(1 / n) \sum_{i=1}^{n} \phi_{m, k}\left(U_{i}\right)\right] \phi_{m, k}$ and :

$$
\mathbb{E}\left[\left(\widehat{g}_{m}-g\right)^{2}\left(x_{0}\right)\right]=\left(g-g_{m}\right)^{2}\left(x_{0}\right)+\mathbb{E}\left[\left(\widehat{g}_{m}-g_{m}\right)^{2}\left(x_{0}\right)\right]
$$

- Upper-bound for the variance term : $\mathbb{E}\left[\left(\widehat{g}_{m}-g_{m}\right)^{2}\left(x_{0}\right)\right] \leq \frac{\nu m}{n}$
- The bias term is difficult to estimate, we replace it by :

$$
\sup _{m \leq j \leq M_{n}}\left(g_{j}-g_{m}\right)^{2}\left(x_{0}\right)
$$

Indeed, if $f \in W(\beta, L)$ with $\beta>1 / 2$:

$$
\begin{aligned}
\sup _{m \leq j \leq M_{n}}\left(g_{j}-g_{m}\right)^{2}\left(x_{0}\right) & \leq 2\left\{\sup _{m \leq j \leq M_{n}}\left(g_{j}-g\right)^{2}\left(x_{0}\right)+\left(g_{m}-g\right)^{2}\left(x_{0}\right)\right\} \\
& \leq 2 C\left\{\sup _{m \leq j \leq M_{n}} j^{-(2 \beta-1)}+m^{-(2 \beta-1)}\right\} \\
& =C^{\prime} m^{-(2 \beta-1)}
\end{aligned}
$$

- The natural idea is to replace $\left(g_{j}-g_{m}\right)^{2}\left(x_{0}\right)$ by $\left(\widehat{g}_{j}-\widehat{g}_{m}\right)^{2}\left(x_{0}\right)$ but :

$$
\begin{aligned}
& \mathbb{E}\left[\left(\widehat{g}_{j}-\widehat{g}_{m}\right)^{2}\left(x_{0}\right)\right]= \\
& \left(g_{j}-g_{m}\right)^{2}\left(x_{0}\right)+\underbrace{\mathbb{E}\left[\left(\left(\widehat{g}_{j}-\widehat{g}_{m}\right)\left(x_{0}\right)-\left(g_{j}-g_{m}\right)\left(x_{0}\right)\right)^{2}\right]}_{\leq \nu(j+m) / n}
\end{aligned}
$$

- The natural idea is to replace $\left(g_{j}-g_{m}\right)^{2}\left(x_{0}\right)$ by $\left(\widehat{g}_{j}-\widehat{g}_{m}\right)^{2}\left(x_{0}\right)$ but :

$$
\begin{aligned}
& \mathbb{E}\left[\left(\widehat{g}_{j}-\widehat{g}_{m}\right)^{2}\left(x_{0}\right)\right]= \\
& \left(g_{j}-g_{m}\right)^{2}\left(x_{0}\right)+\underbrace{\mathbb{E}\left[\left(\left(\widehat{g}_{j}-\widehat{g}_{m}\right)\left(x_{0}\right)-\left(g_{j}-g_{m}\right)\left(x_{0}\right)\right)^{2}\right]}_{\leq \nu(j+m) / n}
\end{aligned}
$$

- We define for every $m \leq M_{n}$:

$$
\begin{gathered}
\widehat{\operatorname{Crit}}(m):=\sup _{m \leq j \leq M_{n}}\left[\left(\widehat{g}_{j}-\widehat{g}_{m}\right)^{2}\left(x_{0}\right)-x_{j, m} \frac{\nu(j+m)}{n}\right]+x_{m} \frac{\nu m}{n} \\
\widehat{m}:=\arg \min _{m=1, \ldots, M_{n}} \widehat{\operatorname{Crit}}(m)
\end{gathered}
$$

where $\left(x_{j, m}\right)$ and x_{m} are numbers of order $\ln (j+m)$ and $\ln m$. Then our estimator is $\widehat{g}_{\widehat{m}}$.

- The natural idea is to replace $\left(g_{j}-g_{m}\right)^{2}\left(x_{0}\right)$ by $\left(\widehat{g}_{j}-\widehat{g}_{m}\right)^{2}\left(x_{0}\right)$ but :

$$
\begin{aligned}
& \mathbb{E}\left[\left(\widehat{g}_{j}-\widehat{g}_{m}\right)^{2}\left(x_{0}\right)\right]= \\
& \left(g_{j}-g_{m}\right)^{2}\left(x_{0}\right)+\underbrace{\mathbb{E}\left[\left(\left(\widehat{g}_{j}-\widehat{g}_{m}\right)\left(x_{0}\right)-\left(g_{j}-g_{m}\right)\left(x_{0}\right)\right)^{2}\right]}_{\leq \nu(j+m) / n}
\end{aligned}
$$

- We define for every $m \leq M_{n}$:

$$
\begin{gathered}
\widehat{\operatorname{Crit}}(m):=\sup _{m \leq j \leq M_{n}}\left[\left(\widehat{g}_{j}-\widehat{g}_{m}\right)^{2}\left(x_{0}\right)-x_{j, m} \frac{\nu(j+m)}{n}\right]+x_{m} \frac{\nu m}{n} \\
\widehat{m}:=\arg \min _{m=1, \ldots, M_{n}} \widehat{\operatorname{Crit}}(m)
\end{gathered}
$$

where $\left(x_{j, m}\right)$ and x_{m} are numbers of order $\ln (j+m)$ and $\ln m$. Then our estimator is $\widehat{g}_{\widehat{m}}$.

- Remark : ν can be replaced by an estimator $\widehat{\nu}_{n}$.

Theorem
If $g \in W(\beta, K)$ with $\beta>1 / 2$ then :

$$
\mathbb{E}\left[\left(\widehat{g}_{\widehat{m}}-g\right)^{2}\left(x_{0}\right)\right] \leq C\left(\frac{n}{\ln n}\right)^{-\frac{2 \beta-1}{2 \beta}}+\frac{C^{\prime}}{n}
$$

Theorem
If $g \in W(\beta, K)$ with $\beta>1 / 2$ then :

$$
\mathbb{E}\left[\left(\widehat{g}_{\widehat{m}}-g\right)^{2}\left(x_{0}\right)\right] \leq C\left(\frac{n}{\ln n}\right)^{-\frac{2 \beta-1}{2 \beta}}+\frac{C^{\prime}}{n}
$$

cf Butucea (2001)

- The minimax rate of convergence over $W(\beta, K)$ is $n^{-(2 \beta-1) /(2 \beta)}$
- The adaptative minimax rate of convergence over the classes $\{W(\beta, K), \beta>1 / 2\}$ is $(n / \ln n)^{-(2 \beta-1) /(2 \beta)}$

II) The errors density

Let's consider $\left(X_{i}, Y_{i}\right)_{i=-n, \ldots, n}$ from the regression framework, and :

$$
Z^{-}=\left\{\left(X_{i}, Y_{i}\right), i=-n, \ldots,-1\right\}, Z^{+}=\left\{\left(X_{i}, Y_{i}\right), i=1, \ldots, n\right\}
$$

II) The errors density

Let's consider $\left(X_{i}, Y_{i}\right)_{i=-n, \ldots, n}$ from the regression framework, and :

$$
Z^{-}=\left\{\left(X_{i}, Y_{i}\right), i=-n, \ldots,-1\right\}, Z^{+}=\left\{\left(X_{i}, Y_{i}\right), i=1, \ldots, n\right\}
$$

- Let \widehat{b} be any estimator of b built from the sample Z^{-}.

II) The errors density

Let's consider $\left(X_{i}, Y_{i}\right)_{i=-n, \ldots, n}$ from the regression framework, and :

$$
Z^{-}=\left\{\left(X_{i}, Y_{i}\right), i=-n, \ldots,-1\right\}, Z^{+}=\left\{\left(X_{i}, Y_{i}\right), i=1, \ldots, n\right\}
$$

- Let \hat{b} be any estimator of b built from the sample Z^{-}.
- Let consider :

$$
\widehat{\epsilon}_{i}=Y_{i}-\widehat{b}\left(X_{i}\right), i=1, \ldots, n
$$

the residuals from the sample Z^{+}. Given Z^{-}, the $\left(\widehat{\epsilon}_{i}\right)$ are i.i.d. of conditionnal density f^{-}, and $\nu^{-}:=\left\|f^{-}\right\|_{\infty}$.

II) The errors density

Let's consider $\left(X_{i}, Y_{i}\right)_{i=-n, \ldots, n}$ from the regression framework, and :

$$
Z^{-}=\left\{\left(X_{i}, Y_{i}\right), i=-n, \ldots,-1\right\}, Z^{+}=\left\{\left(X_{i}, Y_{i}\right), i=1, \ldots, n\right\}
$$

- Let \widehat{b} be any estimator of b built from the sample Z^{-}.
- Let consider :

$$
\widehat{\epsilon}_{i}=Y_{i}-\widehat{b}\left(X_{i}\right), i=1, \ldots, n
$$

the residuals from the sample Z^{+}. Given Z^{-}, the $\left(\widehat{\epsilon}_{i}\right)$ are i.i.d. of conditionnal density f^{-}, and $\nu^{-}:=\left\|f^{-}\right\|_{\infty}$.

- For every $m \leq M_{n}$:

$$
\begin{gathered}
\widehat{f}_{m}^{-}:=\sum_{k \in \mathbb{Z}}\left((1 / n) \sum_{i=1}^{n} \phi_{m, k}\left(\widehat{\epsilon}_{i}\right)\right) \phi_{m, k} \\
\widehat{\operatorname{Crit}}^{-}(m)=\widehat{\sup }_{m \leq j \leq M_{n}}\left[\left(\widehat{f}_{j}^{-}-\widehat{f}_{m}^{-}\right)^{2}\left(x_{0}\right)-x_{j, m} \frac{\nu^{-}(j+m)}{n}\right]+x_{m} \frac{\nu^{-} m}{n} \\
\widehat{m}=\arg \min _{m=1, \ldots, M_{n}} \widehat{\operatorname{Crit}}^{-}(m)
\end{gathered}
$$

and our estimator of f is $\tilde{f}:=\widehat{f}_{\widehat{m}}$.

Theorem
If $f \in W(\beta, K)$ with $\beta>3 / 2$:

$$
\mathbb{E}\left[(\tilde{f}-f)^{2}\left(x_{0}\right)\right] \leq C\left(\frac{n}{\ln n}\right)^{-\frac{2 \beta-1}{2 \beta}}+C^{\prime} \mathbb{E}\left[\|\widehat{b}-b\|_{\mu}^{2}\right]
$$

Theorem

If $f \in W(\beta, K)$ with $\beta>3 / 2$:

$$
\mathbb{E}\left[(\tilde{f}-f)^{2}\left(x_{0}\right)\right] \leq C\left(\frac{n}{\ln n}\right)^{-\frac{2 \beta-1}{2 \beta}}+C^{\prime} \mathbb{E}\left[\|\widehat{b}-b\|_{\mu}^{2}\right]
$$

Proof : $\mathbb{E}\left[(\tilde{f}-f)^{2}\left(x_{0}\right)\right] \leq 2\left\{\mathbb{E}\left[\left(\tilde{f}-f^{-}\right)^{2}\left(x_{0}\right)\right]+\mathbb{E}\left[\left(f^{-}-f\right)^{2}\left(x_{0}\right)\right]\right\}$

- $\mathbb{E}\left[\left(\tilde{f}-f^{-}\right)^{2}\left(x_{0}\right) \mid Z-\right] \leq C\left(\frac{n}{\ln n}\right)^{-\frac{2 \beta-1}{2 \beta}}+\frac{C^{\prime}}{n}$
$\Rightarrow \mathbb{E}\left[\left(\tilde{f}-f^{-}\right)^{2}\left(x_{0}\right)\right] \leq C^{\prime \prime}\left(\frac{n}{\ln n}\right)^{-\frac{2 \beta-1}{2 \beta}}$
- $\mathbb{E}\left[\left(f^{-}-f\right)^{2}\left(x_{0}\right)\right] \leq \mathbb{E}\left[\|\widehat{b}-b\|_{\mu}^{2}\right]$

Theorem

If $f \in W(\beta, K)$ with $\beta>3 / 2$:

$$
\mathbb{E}\left[(\tilde{f}-f)^{2}\left(x_{0}\right)\right] \leq C\left(\frac{n}{\ln n}\right)^{-\frac{2 \beta-1}{2 \beta}}+C^{\prime} \mathbb{E}\left[\|\widehat{b}-b\|_{\mu}^{2}\right]
$$

$$
\begin{aligned}
& \text { Proof }: \mathbb{E}\left[(\tilde{f}-f)^{2}\left(x_{0}\right)\right] \leq 2\left\{\mathbb{E}\left[\left(\tilde{f}-f^{-}\right)^{2}\left(x_{0}\right)\right]+\mathbb{E}\left[\left(f^{-}-f\right)^{2}\left(x_{0}\right)\right]\right\} \\
& \text { - } \mathbb{E}\left[\left(\tilde{f}-f^{-}\right)^{2}\left(x_{0}\right) \mid Z-\right] \leq C\left(\frac{n}{\ln n}\right)^{-\frac{2 \beta-1}{2 \beta}}+\frac{C^{\prime}}{n} \\
& \quad \Rightarrow \mathbb{E}\left[\left(\tilde{f}-f^{-}\right)^{2}\left(x_{0}\right)\right] \leq C^{\prime \prime}\left(\frac{n}{\ln n}\right)^{-\frac{2 \beta-1}{2 \beta}} \\
& \text { - } \mathbb{E}\left[\left(f^{-}-f\right)^{2}\left(x_{0}\right)\right] \leq \mathbb{E}\left[\|\widehat{b}-b\|_{\mu}^{2}\right]
\end{aligned}
$$

- Consequence If we consider an adaptative estimator for b (cf Baraud, 2001), the rate of convergence for \tilde{f} is the maximum of :
- the minimax rate of convergence of b.
- the minimax rate of convergence of f is the sample $\left(\epsilon_{i}\right)$ was observed.

Bibliography

- Y. Baraud, 'Model selection for regression on a random design', 2001, ESAIM.
- B. Laurent, C Ludena, C Prieur, 'Adaptative estimation of linear functionnals by model selection', 2007, ArXiv.
- C. Butucea, 'Exact adaptative pointwise estimation on Sobolev classes of densities', 2001, ESAIM.

