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Framework

• Let (Xi, Yi) be a sample from the regression framework :

Yi = b(Xi) + εi

with

- The (Xi) i.i.d. variables from density µ supported on [0, 1].
Moreover, µ is lower bounded by m0 > 0 and upper bounded by

m1 < ∞.

- The (εi) are i.i.d. variables from density f supported on R,

indépendent from the (Xi), with E[εi] = 0 and upper bounded by

ν < ∞.

• This lecture propose an estimator f̃ of f adapted to the pointwise
risk :

E[(f̃ − f)2(x0)]

where x0 is a �xed point in R.
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Principle of error estimation

• The (εi) are unobserved, so we construct proxies. More precisely, we
observe a 2n-sample (Xi, Yi)i=−n,...,n that we split into two
independent samples :

Z− = {(Xi, Yi), i = −n, . . . ,−1} , Z+ = {(Xi, Yi), i = 1, . . . , n}

• From Z− we build an estimator bb of b
• The residuals from the second sample :

bεi = Yi −bb(Xi) , i = 1, . . . , n

are proxies from the (εi). Given Z−, they are i.i.d. from density f−.
• Finally, by applying a density estimation procedure to the (bεi), we

get an estimator f̃ .
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The pointwise risk

• E[(f̃ − f)2(x0)] ≤ 2{E[(f̃ − f−)2(x0)] + E[(f− − f)2(x0)]}

- E[(f̃ − f−)2(x0)|Z−] is a density estimation error

- As bεi = Yi −bb(Xi) = εi + (b−bb)(Xi), we have :

f−(x0) =

Z 1

0

f(x0 − (b−bb)(x))µ(x)dx

Then, if f is Lipschitz with constant L, we have :

E[(f − f−)2(x0)] ≤ E[
R 1

0
(f(x0)− f(x0 − (b−bb)(x))2µ(x)dx]

≤ L2E[
R 1

0
(b−bb)2(x)µ(x)dx]

• So we need two estimators :

- An estimator of the regression function with an upper bound for the

integrated risk

- An estimator of the density with an upper bound for the pointwise

risk
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I) Density estimation by pointwise model selection

Let (U1, . . . , Un) i.i.d. from density g on R with ν := ‖g‖∞ < ∞, and x0

a �xed point in R. We want to build an estimator of g by pointwise
model selection.

I.a) Principle of model selection

I.b) Set of models

I.c) Classes of regularity

I.d) Estimation procedure

I.e) Results



I.a) Principle of model selection

We consider a �nite collection {Sm,m ∈Mn} of linear subsets of
L2(R).

• For every m ∈Mn, given {φλ, λ ∈ Im} an orthonormal basis of Sm,
the orthogonal projection of g onto Sm is : gm =

∑
λ∈Im

〈φλ, g〉φλ.
Then, we consider the projection estimator of g onto Sm :

ĝm :=
∑

λ∈Im

(
1

n

n∑
i=1

φλ(Ui))φλ

• We get a collection of estimators {ĝm,m ∈Mn}, from which we
would like to select the best one. For every m ∈Mn :

E[(ĝm − g)2(x0)] = (g − gm)2(x0)︸ ︷︷ ︸ + E[(ĝm − gm)2(x0)]︸ ︷︷ ︸
bias variance

- We estimate the bias term with help of bgm.

- We upper-bound the variance term by a deterministic term function

of m and n, called the penalty.
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I.b) Set of models

The models are built from the sine-cardinal function :

φ(x) :=
sin(πx)

πx

Fore every m ∈ N∗, k ∈ Z, we de�ne :

φm,k :=
√

mφ(mx− k)

Sm = V ect(φm,k, k ∈ Z)

and we consider the collection of models Mn = {Sm,m = 1, . . . ,Mn},
with Mn ≤ n.



I.c) Classes of regularity

For every β > 0, K > 0, let's de�ne :

W (β, K) := {h : R → R,

∫
h = 1,

∫
R
|h∗(λ)|2λ2βdλ ≤ L2}

where h∗(λ) =
∫

R h(x)eiλxdx.

Proposition

Let β > 0, K > 0, then :

(h− hm)2(x) ≤ Cm−(2β−1), ∀h ∈ W (β, K),∀x ∈ R

for some constant C.
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I.d) Estimation procedure

For every m ≤ Mn, ĝm =
∑

k∈Z[(1/n)
∑n

i=1 φm,k(Ui)]φm,k and :

E[(ĝm − g)2(x0)] = (g − gm)2(x0) + E[(ĝm − gm)2(x0)]

• Upper-bound for the variance term : E[(ĝm − gm)2(x0)] ≤ νm
n

• The bias term is di�cult to estimate, we replace it by :

sup
m≤j≤Mn

(gj − gm)2(x0)

Indeed, if f ∈ W (β, L) with β > 1/2 :

sup
m≤j≤Mn

(gj − gm)2(x0) ≤ 2{ sup
m≤j≤Mn

(gj − g)2(x0) + (gm − g)2(x0)}

≤ 2C{ sup
m≤j≤Mn

j−(2β−1) + m−(2β−1)}

= C ′m−(2β−1)
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• The natural idea is to replace (gj − gm)2(x0) by (ĝj − ĝm)2(x0) but :

E[(ĝj − ĝm)2(x0)] =
(gj − gm)2(x0) + E[((ĝj − ĝm)(x0)− (gj − gm)(x0))

2]︸ ︷︷ ︸
≤ν(j+m)/n

• We de�ne for every m ≤ Mn :

Ĉrit(m) := supm≤j≤Mn
[(ĝj − ĝm)2(x0)− xj,m

ν(j+m)
n ] + xm

νm
n

m̂ := arg minm=1,...,Mn
Ĉrit(m)

where (xj,m) and xm are numbers of order ln(j + m) and lnm.
Then our estimator is ĝ bm.

• Remark : ν can be replaced by an estimator ν̂n.
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Theorem

If g ∈ W (β, K) with β > 1/2 then :

E[(ĝ bm − g)2(x0)] ≤ C(
n

lnn
)−

2β−1
2β +

C ′

n

cf Butucea (2001)

- The minimax rate of convergence over W (β, K) is n−(2β−1)/(2β)

- The adaptative minimax rate of convergence over the classes

{W (β, K), β > 1/2} is (n/ ln n)−(2β−1)/(2β)
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II) The errors density

Let's consider (Xi, Yi)i=−n,...,n from the regression framework, and :

Z− = {(Xi, Yi), i = −n, . . . ,−1} , Z+ = {(Xi, Yi), i = 1, . . . , n}

• Let b̂ be any estimator of b built from the sample Z−.

• Let consider :
ε̂i = Yi − b̂(Xi) , i = 1, . . . , n

the residuals from the sample Z+. Given Z−, the (ε̂i) are i.i.d. of
conditionnal density f−, and ν− := ‖f−‖∞.

• For every m ≤ Mn :

f̂−m :=
∑

k∈Z((1/n)
∑n

i=1 φm,k(ε̂i))φm,k

Ĉrit
−

(m) = supm≤j≤Mn
[(f̂−j − f̂−m)2(x0)− xj,m

ν−(j+m)
n ] + xm

ν−m
n

m̂ = arg minm=1,...,Mn Ĉrit−(m)

and our estimator of f is f̃ := f̂−bm.
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Theorem

If f ∈ W (β, K) with β > 3/2 :

E[(f̃ − f)2(x0)] ≤ C(
n

lnn
)−

2β−1
2β + C ′E[‖b̂− b‖2

µ]

Proof : E[(f̃ − f)2(x0)] ≤ 2{E[(f̃ − f−)2(x0)] + E[(f−− f)2(x0)]}

• E[(f̃ − f−)2(x0)|Z−] ≤ C( n
ln n

)−
2β−1

2β + C′

n

⇒ E[(f̃ − f−)2(x0)] ≤ C′′( n
ln n

)−
2β−1

2β

• E[(f− − f)2(x0)] ≤ E[‖bb− b‖2
µ]

• Consequence If we consider an adaptative estimator for b (cf
Baraud, 2001), the rate of convergence for f̃ is the maximum of :

- the minimax rate of convergence of b.

- the minimax rate of convergence of f is the sample (εi) was
observed.
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