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Framework

e Let (X;,Y;) be a sample from the regression framework :
Y =b(X;) + ¢

with
- The (X;) i.i.d. variables from density p supported on [0, 1].
Moreover, i is lower bounded by mo > 0 and upper bounded by
mp < 00.
- The (e;) are i.i.d. variables from density f supported on R,
indépendent from the (X;), with E[e;] = 0 and upper bounded by
v < 00.
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Y =b(X;) + ¢

with
- The (X;) i.i.d. variables from density p supported on [0, 1].
Moreover, i is lower bounded by mo > 0 and upper bounded by
my < 00.
- The (e;) are i.i.d. variables from density f supported on R,
indépendent from the (X;), with E[e;] = 0 and upper bounded by
v < 0.
e This lecture propose an estimator f of f adapted to the pointwise
risk :

E[(f — f)*(x0)]

where z¢ is a fixed point in R.
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Principle of error estimation

e The (¢;) are unobserved, so we construct proxies. More precisely, we
observe a 2n-sample (X;,Y;)i=—n,. . that we split into two
independent samples :

Z- ={(X,Ys),i=-n,...,—1}, Z" ={(X;,Y:),i=1,...,n}

e From Z~ we build an estimator b of b
e The residuals from the second sample :

a=Yi—bXi),i=1,...,n

are proxies from the (¢;). Given Z~, they are i.i.d. from density f~.
e Finally, by applying a density estimation procedure to the (€;), we

get an estimator f.
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The pointwise risk

o E[(f — /)*(w0)] < 2{E[(f = £7)*(z0)] + E[(f~ = f)*(w0)]}

- EI(f - f)? (xo)|Z ]isa density estimation error
- Asa:K—b(X)—e + (b —b)(X) we have :

@)= [ o~ (0 D)
0
Then, if f is Lipschitz with constant L, we have :

E[(f ~ £ )@o)] < B (o) = flao — (b~ B)(x))u(x)da]
< DE[[} (b0~ DR(e)u(z)ds]



The pointwise risk

o E[(f — /)*(w0)] < 2{E[(f = £7)*(z0)] + E[(f~ = f)*(w0)]}

- E[(f — f)*(x0)|Z7] is a density estimation error

A~

- AsE =Y —b(X;) =€ + (b—b)(X;), we have :

@) = [ fa = 0~ B@)u)is
Then, if f is Lipschitz with constant L, we have :
E[(f — f)(ao)] < E[f(f(a0) = f(zo — (b—B)(2))*n(z)da]
< LE[f}(b— b)2(x)u(x)da]
e So we need two estimators :

- An estimator of the regression function with an upper bound for the
integrated risk

- An estimator of the density with an upper bound for the pointwise
risk



I) Density estimation by pointwise model selection

Let (U1,...,Uy,) i.id. from density g on R with v := ||g]|cc < 00, and zg
a fixed point in R. We want to build an estimator of g by pointwise
model selection.

I.a) Principle of model selection

Set of models

I.b)

I.c) Classes of regularity
I.d) Estimation procedure
l.e)

Results
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[.a) Principle of model selection
We consider a finite collection {S,,,,m € M,,} of linear subsets of
L?(R).
o For every m € M., given {¢x, A € I,,} an orthonormal basis of S,,,
the orthogonal projection of g onto S, is : g, = Z/\el (Dx, §)PA-

m

Then, we consider the projection estimator of g onto S, :
1 n
/g\m. = Z (ﬁ Z¢A(Uz))¢)\
AEL, =1

e We get a collection of estimators {g,,, m € M,,}, from which we
would like to select the best one. For every m € M,, :

E[(@m — 9)*(@0)] = (9= 9m)*(x0) +E[(Gm — gm)*(0)]

bias variance

- We estimate the bias term with help of g,.
- We upper-bound the variance term by a deterministic term function
of m and n, called the penalty.



.b) Set of models

The models are built from the sine-cardinal function :

_ sin(mx)

¢(x) -

T

Fore every m € N*, k € Z, we define :
¢7n,k’ = \/E(,ZS(’ITLZC - k)

S = Vect(pm i, k € Z)

and we consider the collection of models M,, = {S,,,m=1,..., M,},
with M,, < n.



L.c) Classes of regularity

For every 8 > 0, K > 0, let's define :
W(3,K)={h:R— R,/h = 1,/ |W*(N)PA%PdX < L2}
R

where h*(X) = [; h(z)e"*da.



L.c) Classes of regularity

For every 8 > 0, K > 0, let's define :
W(3,K)={h:R— R,/h = 1,/ |W*(N)PA%PdX < L2}
R
where h*(X) = [; h(z)e"*da.

Proposition
Let 3>0, K >0, then :
(h = hy)?(z) < Cm~@D vh e W(B,K),Vz € R

for some constant C.
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I.d) Estimation procedure

For every m < My, Gm = Y 1ezl(1/7) 3271 Gmi(Us)]dm i and :

E[(§7rz - g)z(xO)] = (g - gm)z(xo) + ]E[(@\m - gm)2(l‘0)]
Upper-bound for the variance term : E[(Gy, — gim)?(z0)] < vm
The bias term is difficult to estimate, we replace it by :

sup  (g; — gm)*(w0)
m<j<M,

Indeed, if f € W(8,L) with 8> 1/2 :

sup (95— 9m)*(w0) < 2{ sup (g5 —9)*(z0) + (9m — 9)*(z0)}
m<j<M, m<j<M,

20{ sup 707N 41
m<j< M,
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e The natural idea is to replace (g; — gm)?(20) by (g; — Gm)?(20) but :
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e The natural idea is to replace (g; — gm)?(20) by (g; — Gm)?(20) but :

E[(; — 9m)*(2z0)] =
(95 — 9m)*(z0) + E[((G5 — Gm)(x0) — (95 — gm)(20))’]

<v(j+m)/n

e We define for every m < M,, :

vm

Crit(m) = supy,<j<ar, 1G5 — Gn)?(w0) = @) “E] + 2,22
m = argming,—1 a7, Crit(m)

.....

where (z;,,,) and x,, are numbers of order In(j +m) and Inm.
Then our estimator is gz

e Remark : v can be replaced by an estimator 7,,.
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Theorem
If g e W(B,K) with 3 > 1/2 then :
- O

23 i
n) * n

E[(gm — 9)°(w0)] < ot

cf Butucea (2001)

- The minimax rate of convergence over W (8, K) is n~(2#=1)/(5)
- The adaptative minimax rate of convergence over the classes
{W(B.K),8>1/2} is (n/Inn)~ 21/
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IT) The errors density

Let's consider (X;,Y;)i=—n,....n from the regression framework, and :
Z- ={(X;,Y:),i=-n,...,—-1}, Z" ={(X;,Y3),i=1,...,n}

o Let b be any estimator of b built from the sample Z~.
o Let consider : R
a:}/sz(Xl)a i:]-a"'vn
the residuals from the sample Z*. Given Z~, the (€;) are i.i.d. of
conditionnal density f~, and v~ := || f ||
o For every m < M,

- = a1/ Sy Gk (2
Crit (m) = Squ<]<M [( - f )2($0)/__ij,mm] + xmynm

m = arg mingy,=1,.m, Crit—(m)

and our estimator of f is f := ﬁ%-
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Proof : E[(f — f)*(w0)] < 2{E[(f — /= )?(x0)] +E[(f~ — /)*(x0)]}

o E[(f - f7)(x0)|Z-] < C(ﬁ)*ﬁ e

= E[(f — /) (x0)] < C"(;%) 77
o E[(f~ — f)*(z0)] < E[[[b— b]2]




Theorem
If feW(B,K) with 3 >3/2:

E[(f — £)(xo)] < O(=) "5 + C'E[[5 - 0]

Proof : E[(f — /)*(0)] < 2{E[(/ — /7 P(z0)] + E[(/~ — ))*(wo)]}
o E[(f - f7)(x0)|Z-] < C(ﬁ)*ﬁ el

= E[(f — /) (x0)] < C"(;%) 77
o E[(f~ — f)%(z0)] < E[[[b— b]12]

e Consequence If we consider an adaptative estimator for b (cf
Baraud, 2001), the rate of convergence for f is the maximum of :

- the minimax rate of convergence of b.

- the minimax rate of convergence of f is the sample (¢;) was
observed.
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