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Abstract

Mathematical models of dynamic biochemical processes are char-
acterised by their network structure and their parameters. Since pa-
rameters are often not or not sufficiently well determined, we propose
to use a Monte-Carlo sampling approach. Parameters are drawn from
a distribution to study the resulting distribution of qualitative and
quantitative properties of the system. A genetic circuit that may ex-
hibit oscillations is used as example.

1 Introduction

Models with uncertain parameters

Mathematical modelling and dynamic simulation of metabolic networks, sig-
nal transduction cascades, and genetic networks is a central theme in systems
biology and is attracting growing interest [1] [2]. Building mathematical mod-
els comprises mainly two aspects: (a) deciding on the model structure and (b)
estimating the involved parameter values. The model structure reflects the
investigated processes and the respective reaction network. Given a model
structure, parameter estimation remains the limiting step in the modelling
and simulation of biological systems. Parameter estimation for non-linear
dynamic systems has been studied comprehensively [3][4], but in most cases,
the amount of data available for a specific process and the respective model
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Figure 1: Dynamics of the repressilator below and above the Hopf bifurcation. The Hill
coefficient h is a bifurcation parameter. For h < hcrit, the system always tends to a steady
state, while for h > hcrit, oscillations can arise.

is by far too sparse to determine the parameters reliably. Moreover, a part of
the system parameters may not be identifiable from the set of experiments, or
parameter values remain unreliable due to measurement errors, dependence
on experimental conditions, and individual variations in cell composition and
state.

Therefore, we would like to change the perspective and investigate to
which extent the network structure determines the quantitative and quali-
tative behaviour of the system - irrespective, or almost irrespective, of the
parameter values. In this situation, an approach based on uncertain param-
eters can be helpful: one may assess the effects of measurement errors, find
results that remain valid for a wide range of parameter values, and derive
probabilities for different model outcomes. Besides this, probabilistic models
may also be employed to describe the natural variability of parameters when
studying the variability and robustness of biological systems.

Uncertainties in the qualitative and quantitative be-

haviour

The presented approach is to assume that the parameters are not fixed or
estimated, but drawn from a distribution, which has to be specified [5] [6].
This parameter distribution, together with the fixed network structure, leads
to distributions of the observables. Repeated simulations of the model, with
parameters drawn from their distributions, will yield many realisations of the
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dynamic profiles and observable quantities of the system. If the distribution
of a quantity is sharp, we conclude that this quantity is strongly determined
by the network structure, at least for the ensemble of parameters considered.
This allows to study which kind of quantitative and qualitative behaviour
can be expected from the model.

If the parameter variance is zero, then also the observables are, of course,
exactly determined. For small parameter variability, the width of the variable
distribution can be computed by expanding the variables around the mean
parameter values. To first order, a log-normal parameter distribution leads
to a corresponding log-normal distribution of the observables. The variance
depends on the sensitivities, that is, the slopes of logarithmic observables
seen as functions of the logarithmic parameters [6].
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Figure 2: The critical Hill coefficient depends on the parameters α, β, and k. The dia-
gram shows the function hcrit(α, β, k) (schematic). The parameters α, β, and k (schemat-
ically represented by the abscissa) are drawn from a random distribution (a Gaussian
distribution for logarithmic values). By computing the value of hcrit for each realisation,
we can sample distribution of this parameter (plotted at the ordinate). A linear function
hcrit(α, β, k) would, again, yield a log-normal distribution.

Monte Carlo simulations with random parameters have been used to com-
pute the distributions of metabolic concentrations, metabolic fluxes, control
coefficients, and other variables [5] [7]. The same approach has been applied
to gene regulatory circuits [8] and a MAP kinase cascade [9]. Here we focus
on another feature of dynamic systems, namely a the location of a bifurcation
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point. We study a simple genetic network as has been analysed by Elowitz
and Leibler [10]. It shows a parameter-dependent transition from stable be-
haviour to oscillations, known as a Hopf bifurcation. The Hill coefficient in
the kinetic equations is a critical parameter. By sampling all other parame-
ters from predefined distributions, we compute the distribution of the critical
value.
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Figure 3: Three of the four plots show histograms of the distribution the parameters α,
β and k were drawn from. The width was in each case σ = 0.01. The bottom right plot
shows the histogram for the resulting distribution of the value hcrit.

2 Analysis of the symmetric repressilator

The model

We study a simplified version of the repressilator described in [10]. Three
genes form a negative-feedback loop, each gene repressing the transcription
of the gene it acts on. Their mRNA concentrations xi, i = 1, 2, 3 we model
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by the differential equations

dxi

dt
= −αxi +

β

1 + (
xj(i)

k
)h

(1)

where j(1) = 3, j(2) = 1, j(3) = 2 indicates the upstream gene, respectively.
The parameters α and β describe the strength of degradation and full tran-
scription, while k and h characterise the mutual repression of transcription.
Here we assume that each of the genes is characterised by the same parameter
values. Given values for α, β, and k, this system can show a Hopf bifurcation
at a certain value h = hcrit(α, β, k): for values h < hcrit, the system has a
stable steady state, while for h > hcrit, the steady state becomes unstable
and a stable limit cycle shows up (see Figure 1). For the values α = 0.001,
β = 0.5, k = 100, we find hcrit ≈ 2.78.
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Figure 4: Correlation plots for the three parameters α, β and k versus hcrit. The bottom
right plot shows the strong correlation between lnα − lnβ + lnk and hcrit.

Parameter sampling and bifurcation analysis

The parameters α, β, and k were drawn from log-normal distributions such
that log

10
α, log

10
β, and log

10
k are independent and normally distributed
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with a standard deviation of σ and mean values ᾱ = 0.001, β̄ = 0.5, and
k̄ = 100, respectively. We performed 10000 simulations for distributions
with widths σ = 0.01 and σ = 0.2. By drawing from these a set of pa-
rameters, each time we obtain a realisation of the dynamic system in which
the Hill coefficient h is still undetermined. For each such realisation, we
run a bifurcation analysis to determine the critical value hcrit(α, β, k) of the
Hill coefficient. By repeating the drawing from the parameter distributions,
we can sample the distribution of critical Hill coefficients (see Figure 2).
Dynamic simulations were performed with matlab. The critical parameter
h = hcrit(α, β, k) was determined using the package MATCONT [?] and by
searching at least the interval from 1 to 50.
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Figure 5: Three of the four plots show histograms of the distribution the parameters α,
β and k were drawn from. The width was in each case σ = 0.01. The bottom right plot
show the histogram for the resulting distribution of the value hcrit.

Results

For a parameter width σ = 0.01 we were always able to determine the bi-
furcation points. Figure 3 shows histograms of the random parameters and
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the resulting values of hcrit. In 104 simulations, no critical value lower than
∼ 2.68 was found. The correlation between the individual parameters and
hcrit is shown in the (logarithmic) scatter plots in figure 4.

We find positive correlation values for α and k, respectively, while β is
negatively correlated with hcrit. This shows that a lower damping (small α)
and a stronger coupling (high β or low k) between genes makes the system
more prone to oscillations.

For a parameter width σ = 0.2 we found a bifurcation point in 9779 out
of 10000 simulations. Figures 5 and 6 show the the parameter histograms,
the resulting histogram for hcrit and the correlations plots. The lowest value
hcrit we found was ∼ 2.09.

The qualitative behaviour of the cycle does not depend on the absolute
scaling of time and concentration. This implies that hcrit can only depend
the linear combination lnα− lnβ + lnk which is confirmed by our simulation
results (see figures 4 and 6).
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Figure 6: Correlation plots for the three parameters α, β and k versus hcrit. The bottom
right plot still shows that hcrit is a function of lnα − lnβ + lnk.
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3 Discussion

Parameter estimation for complex dynamic models is a challenge in current
systems biology. To study the potential dynamic behaviour of a given model
with uncertain parameters, we use a Monte-Carlo sampling approach. We
draw the parameters from a distribution and observe the distribution of the
variables in the simulated system.

In the example model describing a small genetic network, the incidence
of a Hopf bifurcation (a qualitative trait) and the distribution of the critical
values of the Hill coefficient, at which the Hopf bifurcation occurs (a quanti-
tative measure), have been determined. We may also ask a slightly different
question: if all parameters (including the Hill coefficients) are drawn from
distributions, what is the probability for the system to oscillate? Given our
distribution of hcrit, this can be easily answered by sampling h and hcrit in-
dependently from their distributions and counting how often h > crit .

The presented analysis can be considered as first step towards a thor-
oughly parameterized model. It gives hints, which types of qualitative be-
haviour can be expected at all and at which parameter combination. It en-
rolls which parameter values have a strong influence on the dynamics, which
points points to parts of the model where exact measurements are necessary
or where fluctuations are important or nonrelevant.
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[9] N. Blüthgen and H. Herzel. How robust are switches in intracellular
signaling cascades? J Theor Biol, 225(3):293–300, 2003. 0022-5193
Journal Article.

[10] M.B. Elowitz and S. Leibler. A synthetic oscillatory network of tran-
scriptional regulators. Nature, 403:335–338, 2000.

[11] YA Kuznetsov A Dhooge, W Govaerts. MATCONT: A MATLAB pack-
age for numerical bifurcation analysis of ODEs.

9


