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Abstract 
 
Functional properties of biochemical networks depend on both the network structure and the kinetic 
parameters. Extensive data on metabolic network topologies have been collected in databases, but 
much less information is available about the kinetic constants or metabolite concentrations. Depending 
on the values of these parameters, metabolic fluxes and control coefficients may vary within a wide 
range. Nevertheless, some of the parameters may have little influence on the observables of interest. 
We address the question whether, despite uncertainty about kinetic parameters, probabilistic statements 
can be made about dynamic network features. To this end, we perform a variability analysis of the 
parameters: assuming that the parameters follow statistical distributions, we compute the resulting 
distributions of the network properties like metabolic fluxes, concentrations, or control coefficients by 
Monte Carlo simulation. In this manner, we study systematically the possible distributions arising from 
typical topologies of biochemical networks such as linear chains, branched networks, and signaling and 
gene expression cascades. This analysis reveals how much information about dynamic behavior can be 
drawn from structural knowledge. 
 
Keywords: biochemical network, steady state behavior, large-scale simulation, variability 
analysis 
 
 

1  Introduction 
 
Systems biology [12] aims at investigating cellular networks by combining experiments, 
mathematical modeling, and computer simulations. One fundamental prerequisite for the 
construction of cell models is the analysis of metabolic and signaling networks. The 
description of such systems comprises both the network structure and the reaction kinetics: 
only if both are known, stationary states, time courses and responses to parameter changes 
can be computed. By structure, we understand the stoichiometry and the reversibility of 
reactions, which both do not depend on the enzymes. The kinetics, i.e. the reaction velocity as 
a function of substrates, products, and other substances (regulators), is usually described by a 
fixed mathematical function (for instance, the Michaelis-Menten (MM) kinetics) and 
parameters (like Km, Vmax, and possibly inhibition constants, for MM kinetics). In contrast to 
the structural features mentioned before, the values of kinetic parameters depend on the 
enzyme and on the status of the cell. Metabolic control theory studies how the local properties 
of single reactions affect global properties of the whole metabolic system, such as the 
qualitative behavior (steady states, oscillations), or global steady-state properties.  
 



High-throughput methods provide large amounts of qualitative data, e.g., on protein 
interactions networks [17], gene regulatory networks, genome-scale reconstructed metabolic 
networks [2]. Networks are stored in databases like KEGG [9][24], Genome Knowledgebase 
[25], MetaCyc [13], EcoCyc [10] which makes them easily available for further analysis. On 
the other hand, the quantitative knowledge about the interactions and their individual kinetics 
is rather incomplete. Besides direct measurements, kinetic constants may be fitted to describe 
experimental data like fluxes estimated from metabolite isotopomer distribution [20,21]. A 
major problem with this approach is that detailed measurements of concentrations, fluxes, and 
time courses of individual compounds are rare, at least compared to the number of 
compounds and the complexity of the networks. Moreover, a part of the system parameters 
may not be identifiable from the set of experiments. Finally, parameter values remain 
unreliable due to measurement errors, dependence on experimental conditions, and individual 
variations in cell composition and state. Anyhow, partial information about their values can 
be drawn from known equilibrium constants or at least from the reversibility of reactions. 
 
Despite this lack of knowledge, there are several large-scale cell simulation projects (e.g. E-
cell, [19,23] also [2], [7]), which have to make kinetic assumptions. In the strict sense, also 
the choice of small subsystems, as in traditional modeling, is an implicit kinetic assumption. 
Thus one has to tackle large networks where only partial information is available: but how 
can we draw functional conclusions from the network structure, combined with uncertain 
(measurement errors), partial (equilibrium constants), or qualitative (reversibility) information 
on the network parameters?  
 
The basic idea of this article is that some properties of networks may depend only weakly on 
the choice of parameters, i.e. be determined with high probability by topology or equilibrium 
constants. To test this, we assume that the network topology is fixed and known, while the 
model parameters, that is, kinetic constants of all reactions and the values of external 
metabolites, follow a statistical distribution. This parameter distribution, together with the 
fixed network structure, leads to distributions of the observables (concentrations, metabolic 
fluxes, control coefficients, and mathematical functions thereof, such as signs, order relations 
etc.). If a distribution is sharp, we conclude that the quantity is strongly determined by the 
network structure, at least for the ensemble of parameters considered. 
 
The case where parameters are known up to a small uncertainty can be treated by a linear 
approximation: in first order, a log-normal parameter distribution leads to a corresponding 
log-normal distribution of the observables. The variance depends on the sensitivity of a 
logarithmic observable y to a logarithmic parameter x, that is, the respective normalized 
response coefficient. The case where x is an elasticity and y is a control coefficient has been 
treated by Small and Fell [16]. If the parameter variance is zero, then also the observables are 
exactly determined. Here we use Monte Carlo simulations, drawing samples from the 
parameter space: this allows us to consider large parameter uncertainties and binary network 
properties like flux directions. This approach has been applied to gene regulatory circuits [11] 
and a MAP kinase cascade [1].  
 
As examples, we study typical topologies of the biochemical networks: a linear chain of five 
reactions, a small branching network, a cascade with two/three states on every level, and a 
glycolysis model based on a list of chemical reactions from KEGG. 
 
 
2  Methods 
 
Biochemical networks. The dynamics of a biochemical reaction system is described by a set 
of ordinary differential equations (ODEs)  
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where m is the number of biochemical species Mi with the concentrations ic  and r the number 
of reactions with the rates jv , and the quantities ijn  denote the stoichiometric coefficients. 
The kinetic functions of reactions jv  follow either mass action kinetics  
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with the rate constants kj and k-j as parameters, or Michaelis-Menten kinetics (denoted in the 
following by MM)  
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with maximal velocities Vmax and Km-values as kinetic parameters1. Given the kinetic 
parameters and fixed external metabolite concentrations, a stationary state fulfilling 

0=dtdci  is computed by substituting the kinetic function (equation (2) or (3)) into the 
right-hand side of equation (1) and solving for the concentrations. 
 
Flux or concentration control coefficients [3,8] are defined as 
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where iX  denotes either the stationary flux through reaction i or the stationary concentration 
of metabolite i, respectively. The control coefficients provide a quantitative measure for 
changes of iX  at perturbation of reaction jv . They can be computed from the stoichiometric 
matrix ( ijn ) and the elasticity coefficients, i.e., the linearized kinetics (see, for instance, 
Heinrich and Schuster [4]). 
 
Parameter distributions. The kinetic constants ( mj KVk ,, max± ) are drawn independently from 
one of the following distributions: (1) the uniform distribution (UD) with 

33 1010 == − MaxMin ,  or (2) the log-normal distribution (LND) with parameters 
5.2,1 == σµ  (mean and standard deviation of the logarithmic values). The choice of the log-

normal distribution is based on a collection of measured and published kinetic constants for 
various networks from literature [5,14,18] and from the BRENDA database [26]. The 
distribution of their values in [µM/min] could be approximated by the above log-normal 
distribution. Moreover, the log-normal distribution is well suited for variables with 
multiplicative errors, i.e. for the case where it is equally probable that the value is an order of 
magnitude larger or smaller. 
If indicated we also consider constraints by equilibrium constants: for monomolecular 
reactions with mass action kinetics (equation (1)), the equilibrium constant, i.e. the ratio 

jjj kkq −=  of the rate constants, is determined by the difference of free enthalpies. Similar 
constraints also hold for the other types of kinetics considered. Choosing independent random 
values for the rate constants would lead to inconsistencies. To avoid this, we can constrain the 
rate constants to fulfill energy differences, which are either known, or chosen randomly. 

                                                           
1 More types of kinetic functions are described, but we restrict the current analysis to mass action and 
MM kinetics. 



Practically, the forward rate constant is drawn from a distribution, while the backwards 
constant is computed from forward constant and equilibrium constant. 
We calculate steady state observables (fluxes, concentrations, control coefficients) for 
different biochemical networks for the indicated numbers of random choices of parameters 
values from UD or LND. The distributions of the observables will be characterized by their 
mean values (Mean) and the coefficients of variation CV (standard deviation divided by mean 
value), or shown by frequency distributions.  
Calculations have been performed with Mathematica, Wolfram Research and, in the case of 
the KEGG glycolysis model, with the modeling and simulation environment PyBioS [22]. 
 
3  Results 
 
3.1  Unbranched reaction chains 
 
We consider a linear pathway consisting of 5 successive reactions as depicted in Fig. 1. In the 
basic version all reactions are reversible (i). The kinetic constants are chosen either from UD 
or LND. Furthermore, we investigate the cases that (ii) all equilibrium constants qj are known 
and have a fixed value equal to 5, (iii) negative feedback inhibition from metabolite 4 to 
reaction 2 occurs, (iv) reaction 2 is irreversible, (v) a combination of (iii) and (iv), (vi) 
reaction 2 is coupled with another reaction by sharing substrates (like coupling with ATP 
consumption) with fixed or random kinetics (vi+). In order to get positive fluxes, the 
concentrations of the external metabolites are chosen as 10 =c  and 05 =c , respectively. In 
each case we compute the steady state for 104 to 106 parameter choices. 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1: Schematic representation of pathway examples 
 
Fluxes 
For all pathway examples, the resulting values for steady state fluxes cover several orders of 
magnitude: from 4 orders of magnitude for pathway example (vi) with UD to more than 10 
orders of magnitude for most of the other examples (e.g. from 10-7 to 103). With kinetic 
constants drawn from the UD, the flux values tend to become higher and their coefficients of 
variation become lower, as compared to the LND. The LND leads to a smeared distribution of 
fluxes over many orders of magnitude.  
This effect is almost independent of features like irreversibility or feedback. For the case of 
mass action kinetics with parameters from LND the only sharp distribution results from a 
coupling with another reaction (and fixed total concentration of coupling compounds). The 
flux values for a reaction chain with MM kinetics are also smeared, but they show sharper 
peaks for both distributions of kinetic constants. Nevertheless, their coefficients of variation 
also tend to higher values. 
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Figure 2: Fluxes in unbranched chains. Standard deviations and mean values of fluxes are 
plotted against each other for different versions of the unbranched chain (compare Fig. 1) 
with mass action (left) or Michaelis-Menten kinetics (right). 
 
 
Fig. 2 shows the distributions of reaction rates (means and standard deviations) for all 
considered pathway examples, with mass action and MM kinetics (104 simulation runs in each 
case). Fig. 3 shows the frequency distribution of flux values in a logarithmic scale for the 
different pathways. Note, for comparison, that the steady state fluxes are 0.56 for mass action 
kinetics and 0.11 for MM kinetics for pathway version (i) in the case that all kinetic constants 
are equal to 1. 
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Figure 3: Frequency distribution of flux values for an unbranched reaction chain with mass 
action or MM kinetics at 104 simulation runs with parameters independently taken from LND 
or UD (see text). Pathway examples as described in Fig. 1 and text.  
 
 
Flux control coefficients 
The flux control coefficients describe the linear effect of parameter perturbations on the flux 
values. Fig. 4 shows the mean values and the coefficients of variation for flux control 
coefficients assigned to the reactions in the chain. Note that the flux control coefficients in the 
unbranched pathway must sum up to unity. 
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Figure 4: Flux control coefficients for subsequent reactions in the unbranched reaction chain 
for three different pathway examples: mean values (black dots connected with solid lines) and 
coefficients of variation (blue dots connected with dashed lines). 
 
As the direction of net flux is fixed (positive) by the choice of external metabolite 
concentrations ( 0=mc ), all flux control coefficients are non-negative. For the basic chain (i) 
we find higher flux control coefficients at the beginning and at the end of the chain compared 
to the reactions in between. With feedback (iii), reaction 5 shows an enhanced control over 
the flux, since it degrades metabolite 4, which exerts the feedback inhibition on reaction 2. In 
case (v) with an irreversible reaction 2, the subsequent reactions 3 and 4 exert no control over 
the flux. But reaction 5 has flux control, since it degrades the inhibitor. This general pattern 
remains stable throughout the investigated parameter region. Irreversibility of one reaction 
lowers the CVs of the flux control coefficients, since some of the control coefficients are 
completely fixed (here for the flux control of reactions 3 and 4). 
 
Concentration control coefficients 
The concentration control coefficients describe whether a metabolite concentration is 
increased or decreased after the perturbation of the rate of a reaction. Producing reactions tend 
to have a positive control, while degrading reactions usually exert a negative control over the 
concentration of a metabolite. This is supported by our simulations, as shown in Fig. 5. 
 
         Basic chain (i)                            Feedback (iii)                              Irreversible+feedback (v) 

   
   

   
   

   
  M

et
ab

ol
ite

 

   1 2 3 4 5

1

2

3

4

    1 2 3 4 5

1

2

3

4

    1 2 3 4 5

1

2

3

4

 

�3 �2 �1 0 1 2 3  

   
   

   
  C

V
 

1 2 3 4 5

�4

�2

0

2

4

1 2 3 4 5

�4

�2

0

2

4

1 2 3 4 5

0

10

20

30

40

 
         Reaction number                         Reaction number                         Reaction number 
 
Figure 5: Concentration control coefficients for the unbranched reaction chain. Upper panel: 
Average values, gray level coded: light or dark squares indicate positive or negative values of 
control exerted by a reaction on the concentration of the respective metabolite. Lower panel: 
CV, for each metabolite connected by dotted lines (in online version: metabolite number red – 
1, green – 2, light blue – 3, dark blue – 4) 



In the basic chain with or without feedback ((i) and (iii)) producing reactions yield positive 
values (light squares) and degrading reactions yield negative values (dark squares). This 
pattern is slightly changed in the case (v) of irreversibility and feedback: The negative control 
of the directly degrading reactions is a bit stronger, and reactions 3 and 4 have on average no 
or very low positive control over the concentration of metabolite 1. The coefficients of 
variation vary also systematically: tendentially control coefficients of producing reactions 
have a positive CV and control coefficients of degrading reactions have negative CVs with 
lower absolute values for the directly degrading reaction. Only in the case of irreversibility of 
reaction 2 in conjunction with feedback inhibition the control coefficients of reaction 4 with 
respect to the concentrations of metabolites 1 and 4 show very large CVs. 
 
3.2  Branched reaction network 
 
We have analyzed a series of non-hierarchical reaction networks of different complexity 
containing various numbers of features like feedback inhibition or feedback activation, 
irreversibility of individual reactions or coupling of reactions by common metabolites (not 
shown). The results are qualitatively the same as for linear reaction chains: the distribution of 
steady state flux values is smeared over all orders of magnitude considered.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6: Branched network. Left: basic version, center: with one irreversible reaction, right: 
with feedbacks from metabolites to forming reactions. All external metabolite concentrations 
set to 1. Numbers at arrows indicate the relative frequency of forward fluxes (positive flux 
values) among 105 simulation runs. 
 
Also metabolite concentrations are weakly determined. On the contrary, the flux and 
concentration control coefficients tend to show stable patterns. These patterns are increasingly 
robust with an increasing number of feedback or feed-forward loops or irreversible reactions. 
In the example network given in Fig. 6, the fluxes may assume positive and negative values 
with a probability of 0.5. The absolute values of the CV are in the order of magnitude of 100. 
Imposing restrictions to the direction of single reactions (making one reaction irreversible) 
has mainly local effects: the signs of the fluxes through neighboring reactions (involving the 
same reactant as substrate or product) are affected. If an input or output flux is irreversible, 
then the signs of the other input/output fluxes are shifted (not shown). Interestingly, this 
network tends to an accumulation of metabolite. If the values of all kinetic constants are 
chosen as 1, then the concentration of all metabolites is 1. At random choice of constants, the 
metabolite concentrations reach an order of magnitude of 103 to 105 with CV between 10 and 
100. Thus, in real systems mechanisms should be implemented that prevent metabolite 
accumulation. We tested feedback mechanisms as indicated in Fig. 6, right. This imposed a 
strong restriction on the absolute values of the fluxes (though not on their sign), but no 
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significant decrease of the metabolite concentrations. Only the CVs of metabolite 
concentrations decreased to values between 4 and 8. 
 
3.3  Glycolysis network from KEGG 
 
In order to apply the approach to a system relevant for cellular metabolism we downloaded 
the glycolysis network for Saccharomyces cerevisiae from the KEGG database [27], which is 
schematically represented in Fig. 7. The reaction network has been populated with linear and 
bilinear kinetics with kinetic constants chosen from the uniform distribution. We performed 
770 simulation runs with the PyBioS simulation environment.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7: Schematic representation of the glycolysis network from KEGG, circles denote 
metabolites, arrows denote reactions (for sake of simplicity not all reactions are shown). 
Circle styles code for CVs of metabolite concentrations: filled black circles – fixed 
concentrations, black or gray open circles – low or intermediate CVs, resp., gray or light gray 
filled circles – large or very large CVs. 
 
 
The results for steady state fluxes and concentration for different choices of kinetic constants 
vary substantially. Mean concentrations vary between 0.77 (pyruvate) and 496.1 (β-D-
fructose-1,6-bisphosphate). The coefficients of variation range between 0.64 (2-(α-
Hydroxyethyl) thiamine diphosphate) and 18.68 (β-D-fructose-1,6-bisphosphate). Fig. 8 
shows that the coefficients of variation tend to increase with increasing mean concentrations. 
Less pronounced, this trend can also be observed for the fluxes (not shown). 
The prominent result is that the large coefficients of variation are concentrated in the upper 
part of glycolysis, while lower coefficients are found around pyruvate (see Fig. 7). A possible 
explanation for this finding is the fact that the respective metabolites are close to external 
metabolites where the distance is measured by the number of reactions between them. For 
example, 2-(α-Hydroxyethyl) thiamine diphosphate is directly connected by one reaction to 
external metabolites and β-D-fructose-1,6-bisphosphate has a distance of 3 reactions to the 
closest external metabolite. 
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Figure 8: Glycolysis network according to KEGG chart. Coefficients of variation are plotted 
against mean values for concentrations (logarithmic scale). 
 
 
Fig. 9 represents linear correlations between metabolite concentrations over the different 
simulation runs. In the triangle below the diagonal the pairwise correlation coefficients are 
shown, and the upper triangle illustrates the pairwise distances between the metabolites in the 
network. Again we find a trend that closer metabolites show higher correlation of their 
concentrations. 
 

 
 
Figure 9: Metabolite correlations and network distances. Left: Color-coded matrix 
representation, where both rows and columns correspond to the indicated metabolites. The 
lower triangle shows the correlations (light/dark – low/high correlation), while the upper 
triangle shows pairwise distances (light…dark – 1...4, with 4 as maximal distance in the 
considered network). Right: Histograms of correlations for metabolite pairs in given 
distances. 
 
Based on these simulations we presume that knowledge of certain metabolite concentrations 
diminishes the uncertainty concerning the concentrations of other metabolites, especially in 
their vicinity.  
 



3.4 Regulatory Cascades 
 
Regulatory pathways in cells often contain hierarchical structures in which the product of one 
reaction serves as a catalyst for another reaction. Two examples are shown in Fig. 10. 
 
 
 
 
 
 
 
 
 
 
 
Figure 10: Hierarchical structures with single (left) or double (right) loops on every level. 
 
 
The first scheme is a simplified form the gene expression cascade comprising DNA activation 
by transcription factors (upper level), mRNA formation (middle), and protein production 
(lower level). The second scheme represents the structure of a MAP kinase cascade. 
We performed 104 simulation runs for low (S = 0.01), intermediate (S = 1), and high (S = 100) 
input signal strength: mean values and standard deviations are shown in Fig. 11. The 
metabolite concentrations on each level must fulfill moiety conservation (set arbitrarily to 1). 
 
 Single loop cascade Double loop cascade 

Fl
ux

es
 

1 2 3 4 5 6
Reaction #

0

10

20

30

n
a
e
M

x
u
l
F

 
1 2 3 4 5 6

Reaction #

0

5

10

15

n
a
e
M

x
u
l
F

 

C
on

ce
nt

ra
tio

ns
 

1 2 3 4 5 6
Metabolite #

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

n
a
e
M

n
o
i
a
r
t
n
e
c
n
o
C

 
1 2 3 4 5 6 7 8 9

Metabolite #

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

n
a
e
M

n
o
i
a
r
t
n
e
c
n
o
C

 
Figure 11: Fluxes and metabolite concentrations at low, intermediate, high activation for the 
one-loop cascade for the single and double loop cascade. Left (red), middle (green), and right 
(blue) columns: low, intermediate, and high input signal, respectively. 
 
For both types of cascade (single and double-loop), we find fluxes and concentration patterns 
with comparably low CVs. Interestingly the coefficients of variation are even lower in the 
case of double-loop cascade. Furthermore the signal amplification comparing the 
concentration of the metabolite with the highest number (6 in the single loop case, 9 in the 
double-loop case) at high or low activation is clearly higher in the double-looped hierarchy. 
 
Concentration control coefficients 
The concentration control coefficients for both types of cascade (see Fig. 12 for the double 
loop cascade) exhibit a remarkably robust pattern with an extremely low CV.  
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Fig. 12: Concentration control coefficients in the double-loop hierarchy. 
 
Although it is clear from detailed analysis of signaling pathways that effective signal 
transduction demands appropriate parameters of kinases and phosphatases our results support 
the idea that the structure of signaling cascades already ensures and stabilizes the transfer of 
the signal for a wide range of parameters. The individual dynamics is, of course, determined 
by the precise kinetic values. 
 
 
4  Discussion 
 
There are two recent developments in systems biology: first, biochemical networks can be 
easily extracted from databases; second, attempts are made to use this knowledge for large-
scale or whole-cell modeling without caring about individual reaction kinetics [28]. To 
challenge these approaches, we attempted to extract information about biochemical network 
dynamics from the network structure, with very restricted knowledge about the individual 
reaction kinetics. From this analysis, we can learn (a) what range of states are possible at all, 
(b) which structures like feedback or coupling of fluxes limit the range of dynamics. 
 
It is well known that some features of biochemical networks are invariant with respect to the 
parameters and can be predicted from the structure by algebraic considerations. For instance, 
some of the flux directions may be constrained by the elementary modes [15]. Moreover, the 
summation theorems of metabolic control theory [4] imply linear relations between the 
control coefficients, irrespective of the reaction kinetics.  
 
To go beyond these exact constraints and to deal with uncertain and missing knowledge, we 
investigated the distributions of steady state fluxes and concentrations and the respective 
control coefficients while the kinetic constants were chosen from different distributions. The 
distributions of parameters are supposed to describe a knowledge or belief about their values. 
We may not know anything, or we may know the order of magnitude, or we may know the 
value up to an error. Here we chose the kinetic constants from a log-normal distribution, with 
mean values and standard deviations parameters chosen to describe the distribution of known 
kinetic constants. To compute the distributions of observables, we used Monte Carlo 
simulations. When an observable is almost independent of the parameters, we conclude that it 
is mainly determined by the network structure. We did not consider changes of the qualitative 
behavior, as it is done in bifurcation theory, but our approach can also be used to study the 
probabilities for different kinds of qualitative behavior. 
 
We have analyzed the stable steady states of different artificial and real biochemical networks 
with linear and Michaelis-Menten kinetics. The coefficient of variation was used to measure 
the robustness of network properties like steady state fluxes, concentrations, and control 



coefficients with respect to the kinetic parameters. We found that some of network 
observables are almost, but not entirely constrained by the network structure. Concerning the 
structures, we have found two different kinds of behavior: 
 
1. For networks without intrinsic hierarchy, like the metabolic network, we find that flux 
values are weakly determined by the structure. Even consideration of irreversible reactions or 
feedback does not contribute much to the robustness of fluxes. This kind of network is 
designed to adapt fluxes and concentrations to the actual need of the cell. Prediction of 
dynamics is not possible without detailed knowledge of kinetics (kinetic types of the 
reactions, respective kinetic parameters, equilibrium constants) as well as concentrations of 
external metabolites. This is in accordance with many observations. For instance, Ihmels et al. 
[6] argue that although the structure of metabolic networks is far from linear, reflecting the 
need for flexibility and diversity of metabolic flow, only the transcriptional regulation leads 
the metabolic flow towards linearity. 
 
2. In networks with hierarchical structure, i.e. structures where the product of one reaction 
catalyzes another reaction, flux and concentration values are more strongly determined by the 
structure: the coefficients of variation are quite low. This corresponds to their function of 
transferring a signal. The ability of signal amplification is already implemented in this 
structure, even more in the cascade with two loops. For these structures, the prediction of 
fluxes and concentrations is more promising – although also here, better predictions can be 
attained with more prior knowledge. The sign and the value of control coefficients are much 
more restricted than in networks of the metabolic type. 
 
Altogether, the stochastic approach allowed us to draw information from the network 
structure that could not be inferred from algebraic constraints. Our results also suggest that 
the investigation of networks structures must be accompanied or accomplished by studying 
the kinetics of the individual interactions. 
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