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How robust are Bayesian posterior inferences
based on a Ricker model with regards to
measurement errors and prior assumptions about
parameters?

E. Rivot, E. Prévost, and E. Parent

Abstract: We present a Bayesian approach of a Ricker stock—recruitn®RX &nalysis accounting for measurement

errors onSR data. We assess the sensitivity of posterior inferences) i€ choice of Ricker model parameterizations,
with special regards to management-related ones, @ngr{or parameter distributions. Closed forms for Ricker param
eter posterior distributions exist give#R data known without error. We use this property to develop a procedure based
on the Rao—Blackwell formula. This procedure achieves integration of measurement errors by averaging these closed
forms over possibl&dR data sets sampled from distributions derived from a stochastic model relating field data to the
S and R variables. High-quality Bayesian estimates are obtained. The analysis of the influence of different
parameterizations and of the priors is made easier. We illustrate our methodological approach by a case study of
Atlantic salmon Salmo sala). Posterior distributions fo and R are computed from a mark—recapture stochastic

model. Ignoring measurement errors underestimates parameter uncertainty and overestimates both stock productivity
and density dependence. We warn against using management-related parameterizations because it makes the strong
prior assumption of long-term sustainability of stocks. Posterior inferences are sensitive to the choice of prior. The use
of informative priors as a remedy is discussed.

Résumé: Nous présentons une analyse Bayesienne d’'un modéle stock—recrut&m@rde( Ricker qui integre les

erreurs de mesure sur les donn&R. Nous étudions la sensibilité des inférences a posteripa @ifférentes paramé-
trisations du modele de Ricker, notamment a celles reliées a la gestiar), @&ix distributions a priori sur les parame-

tres. Conditionnellement a une séB8&R connue sans erreur, les distributions a posteriori des parametres peuvent
s’exprimer analytiquement. Nous développons une procédure de Rao—-Blackwell qui s’appuie sur cette propriété. Les
erreurs de mesure sont intégrées en moyennant ces formes analytiques sur un échantillon 8&Rg#&des dans leur
distribution a posteriori issue d’'un modéle stochastique reliant les données de terrain aux v&etiRed es estima-

teurs bayesiens obtenus sont de grande qualité et I'étude de sensibilité aux choix des différentes paramétrisations et des
priors est facilitée. Nous illustrons notre approche méthodologique par un cas d’étude sur le Saumon atBaltigoe (
salar). Les distributions a posteriori d® et R sont issues d’'un modeéle probabiliste de capture—recapture. Ignorer les
erreurs de mesure sous-estime l'incertitude et surestime la productivité du stock et la densité dépendance. Nous ne
recommandons pas I'utilisation systématique des paramétres reliés a la gestion car cela nécessite I'hypothése a priori
que le stock peut se renouveler seul. Les inférences a posteriori sont sensibles au choix des priors. L'utilisation de
priors informatifs pourrait permettre d'y remédier.

Introduction et al. 1998; Schnute et al. 2000). Hilborn and Walters (1992)
listed various sources of uncertainty and statistical pitfalls
The analysis of the relationship between stoSkdnd re  that preclude reliable estimation &R model parameters.
cruitment R) (SR relationship) is critical for setting biological These problems have been dealt with in more detail by sev
or management reference points, especially for geanels eral authors and statistical remedies can be proposed for
species such as salmon (Kennedy and Crozier 1993; Chapntost of them. Walters (1985) addresses the bias induced by
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nonrepresentative sampling in tSevariable. An analysis of a two-step Bayesian procedure R parameter estimations
nonstationarity of th&s/R relationship is provided by Walters that clearly distinguishes both sources of uncertainty,-mea
(1987). Temporal autocorrelation in tI#R series has also surement errors, and process errors (i.e., “natural” variations
been analyzed (Walters 1990; Korman et al. 1995). Theoretiof the recruitment process). The first step consists in quanti
cal studies have shown that measurement errors in Both fying measurement errors ddandR via probability distri
andR (observation errors) may induce strong bias in parambutions conditioned on yearly field data. In the second step,
eter estimates (Walters and Ludwig 1981). This bias possiwe introduce the measurement errors via a Rao—Blackwell
bly entails mistakel®¥R adjustments, which may in turn lead formula, while simultaneously accounting for process errors.
to disastrous stock assessment and management (Ludwig awke show how the Rao-Blackwell formula uses a tricky
Walters 1981; Hilborn and Walters 1992; Schnute 1993). combination between simple averaging over a sample in the
In the present paper, we address three main issues coposterior distribution ofS andR and the analytic expression
cerningSR analysis based on the Ricker model (Hilborn andof the posterior parameter distribution, available when ireat
Walters 1992) using a Bayesian approach. First, we propogéd the Ricker model as a linear one. The Rao-Blackwell
an original method to assess the effect of measurement eprocedure is more specific than general Monte Carlo
rors onS/R parameter uncertainty when measurement errordlarkov Chain (MCMC) simulation methods that may be
are described by a probability distribution function (PDF).used with other “nonlinearS/R relationships. However, it
We advocate and demonstrate the use of posterior PDFs cohas two main advantages. First, it provides very high quality
ditioned by field data, even though our method can be applie@stimators for Bayesian posterior PDFs with modest compu
regardless of how measurement error PDFs are obtained. Pdgtional effort. Second, it is based on closed-form expres
terior PDFs advantageously replace restrictive and somesions in which the influence of the priors and of different
times unfortunate hypotheses on the form of measurememarameterizations appears analytically, thus allowing the
errors that usually occur. Next, we highlight the ins and outsevaluation of the consequences of implicit hypotheses made
of expressing the Ricker model directly in terms of managein BayesianS/Ranalysis.
ment-related parameters. Lastly, we discuss a point that few We again take advantage of the easy manipulation of the
studies have addressed, that is, how prior hypotheses, inclugticker model to compare the standard expression of the
ing a “noninformative prior” on nuisance parameters that areRicker functionR = Se*®S, with formulations inspired from
integrated out (Walters and Ludwig 1994), may influenceSchnute and Kronlund (1996) involving parameters directly
posterior inferences. For each issue, the implications for staelated to management, for instance the st8¢kproducing
tistical estimation ofS/R-related parameters and for manage-maximum sustainable yieldC*. These authors advocated
ment advice are emphasized. We adopt the Bayesian settimganagement-related parameterizatiorstlRmodels because
because it offers conceptual rigor for quantitatively describingt reduces statistical bias and is more robust to the choice of
uncertainties in the states of nature (Ellison 1996; Hilbornthe deterministicS/Rfunction. We extend their study by ex-
and Mangel 1997; Punt and Hilborn 1997). The Bayesiaramining whether it makes sense to systematically replace the
framework is also naturally linked with decision and risk natural Ricker parameterizatiom,p) by a management-
analysis (Francis and Shotton 1997; McAllister andrelated one. We discuss this point from a Bayesian point of
Kirkwood 1998; Robb and Peterman 1998). view, studying the consequences of switching parameterization
The Ricker model is widely used &R analysis, especially in terms of prior parameter specification. We extend the sen
for salmonids (Kennedy and Crozier 1993; Hill and Pypersitivity analysis to the influence of prior specification of the
1998). Although other density-dependent relationships ar@uisance parameter. The analysis of the influence of prior
also commonly utilized (e.g., Beverton—Holt or Schnute—-assumptions is highly facilitated by the use of the Rao—
Deriso models), we focused our attention on the RickeBlackwell formula, which allows us to separate the prior and
model for three reasons. First, in real case studies, it is moghe likelihood in the analysis and to work with nonstandard
often illusive to choose among differe®R models in the and improper prior PDFs.
light of the data (Walters and Korman 2001). Indeejitie We illustrate our methodological work by applying the
SR curves are surrounded by a large amount of residualools that we developed to a case study on the 13-§&ar
variability (Hilborn and Walters 1992), and ) the shape of data set of the River Oir (Lower Normandy, France) Atlantic
the SR curves differ mainly at higts levels for which there  salmon Salmo salay population. Posterior distributions &
are often very few observations (Kennedy and Crozier 1993(spawning adults) andR (measured as young fish or
Chaput et al. 1998). Second, adjusted curves often exhibismolts” migrating to the sea) are obtained by means of a
very similar form in the range that determines managemeniodel working from capture—mark—recapture data. Our case
and biological reference points (Schnute and Kronlundstudy has no pretence to provide a systematical analysis of
1996). Third, the Ricker model offers the advantage of beingneasurement error bias; rather, we point out how our ap
easily linearized. We seize this opportunity to propose a simproach of measurement errors could be transposed to any sit
ple and efficient procedure to account for measurement efyation, provided that a sample from the PDFs describing
rors and to address our two additional main issues within @bservation errors is available, without restriction on the
rigorous mathematical framework. form of these distributions. Indeed, probability distributions
For agR data set known without error, treating the Ricker quite often can be set for observations, at worst from expert
model as a linear one allows the derivation of an analytic exjudgment and at best from field data through the statistical
pression for the parameter posterior PDFs. We take full adprocedures used to estimate stock and recruitment. The deri
vantage of this mathematical convenience offered by theation of the measurement error PDFs is not central to our
Ricker model in terms of closed-form calculation and developpurpose. Hence, to stay focused on the three main issues
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previously mentioned, in this paper we do not detail the ob Ricker model. The marginal posterior PDF féof ultimate inter
servation error model that leads to posterior PDFsSand  estis

R in our case study. The interested reader can refer to Riv _
(1998) for a detailed description of this model. %) Poo(6IDatd) _I{s B [Pr(O(S B & SIRDathld SIR

where P;(8{ SR}) is the marginal posterior 08 under the prior

Material and methods distributionpo. The second factor of the right member of eq. 3-rep

resents uncertainty or§[R} given the field data, i.e., measurement
Problem formulation: Bayesian conditional reasoning errors. The first one brings the recruitment process uncertainty into
allows splitting measurement and process errors the analysis.

The key point of our modeling strategy is the assembling of two It must be noted here that eq. 3 can still be used in any case
models in which the series of stock—recruitment pasR;}, i = 1 where a probability distributiorP({S,R|K) conditional to any
to n (hereafter denoted§R}), are alternatively considered as-un knowledge denoted bl can be derived. Even if the analyst is left
known parameters and as observed variables. These two differemtth only a time series of point estimates f8iR data, such a dis
statuses fo§R series are combined to compute the parameter postribution P(-K) can always be derived from a formalisation, even
terior PDF. On one hand, in a first stochastic model describinghe simplest one, of the knowledge that one has about the way in
measurement errors, series of nonobseSaddR pairs {SR} are  which the observations are collected. In such a general case, the
considered unknown multidimensional random variables with aconditional probability of interest (eq. 3) becomes
posterior PDF conditioned by all field data available, denoted
P({ S R}|Data) (the notatiorP(X|Y) denotes the conditional proba Poo(B1K) :LS R [Pos(B{S & & ,SIRIKH, $ R
bility distribution of the variableX givenY). More precise consid
erations about this posterior distribution will be given when Because the most interesting case is when a posterior PDF of mea
presenting the case study. On the other hand, in a second medel asurement errors can be derived from field data and in order not to
counting for process errorsS{R} are considered as observed vari multiply notations, in the rest of the text measurement errors PDF
ables. The Ricker model in its natural form (eq. 1) describes thewill always be denotedP({ SR}|Data).

recruitment process: Several methods exist to get out of this integration over-mea
_ . surement errors in eg. 3. Numerical MCMC techniques are the
(1) R =Sexp(a— bS+ w), F1lto n most commonly applied. However, when using the Ricker model,

more efficient (i.e., high precision is attained with low computa-

' tional effort) posterior estimations can be obtained by combining a
0= %Edenotes the two-dimensional Ricker parameter vector, andonte Carlo method with an analytical expression. Indeed, when

conditional PDFs are available in closed form, additional advan-
a andb belong to ], +w[. Although the casd < 0 leading to an  tages can be taken from outputs simulated via MCMC techniques
exponential growth of the population is highly improbable, we dothrough the Rao—Blackwell formula (Gelfand and Smith 1990). We
not reject it a priori. Multiplicative log-normal process erra@®%,  introduce this method with a very simple example. Let us define
where thew; are independent random variables normally distrib-tWo random quantitie$ and B, with joint PDF P(A,B), and sup-
uted with mean 0 and standard deviatian represent the POse thatwe are interested in the marginal posterigk uppose
stochasticity of recruitment process. We deliberately ignorecthat we know that the conditional PDRYAIB) is explicitly known
interannual dependence betweBmnd R to simplify the problem  in & closed form and that a samplB¢, g = 1,... G} of size G has
formulation and stay focused on our main issue, the treatment dpeen generated from the posterior distributionBofThen, a high-
measurement errors (see Korman et al. (1995) or Meyer and Millafluality estimator for the posterior PDIXA) can be derived from
(2000) for more recent work about this problem). The log- the sampleB® by the Monte Carlo integration:

normality of process errors has been justified on theoreticak4) 1 8
P(A) =25 [A(ABY)]
Gé{=

where§ is the stock for year, R, is the subsequent recruitment

grounds (Peterman 1981; Hilborn and Walters 1992; Shelton 1992
and has been shown to be consistent with observed data for
salmonids (Bradford 1995).

The posterior PDF for our model paramete@®) given the ob
served data, denotd®(B,o|Data), results from the integration over
{SR} of the joint posterior of all the unobservables, i.e., the pa
rameters o) and the variables §R}. Rewriting the joint PDF
P(6o,{SR}|Data) as the product ofP(8c|{SR},Data) and
P({S R}|Data) and assuming that, giverS{}, the law of (,0) is
independent of the data, this PDF reads

This procedure is easily applied to our case study. Indeed, €ondi
tionally to a SR data set §,R supposedly known without error,
the Ricker model can be conveniently expressed as a linear one
(see Appendix). Therefore, under the hypothesis of a uniform prior
on (a,b) and a particular priopg, the first term of the right mem
ber of eq. 3 has a closed form, denolﬁgo(el{SR}), as shown in

f

Appendix (the subscriptpo and 0 stan or the prior oa and the

— uniform prior on 6, respectively). Then, from the Rao—Blackwell

(2) P(80paty I{S 3 [PO.oS B & SIRDatgid SIR formula, a high-quality estimator fd?,;(8|Data) is computed by
approximating the integral (eq. 3) as follows:

As advised by Geiger and Koenings (1991) and Walters and Lud 16
wig (1994), we limit the number of parameters to estimate by treatin == (g
the standard deviation of process erroras a nuisance parameter. ©) PpU'O(elData) G g;[Pp"*O(el{s R b]
Therefore, the posterid?(6,0|/{ SR}) in eq. 2 is integrated across
all possible values 06 in ]0,+[. This provides a more accurate where the sum is over a “sufficiently large numb&”of samples
assessment of uncertainty aroudithan would be obtained by as  {SR}©@, g = 1,...G, generated from the densif({ SR}|Data). It
suming a particular value for the nuisance parameter (Walters anig straightforward to obtain such a sample from an observation er
Ludwig 1994). This integration over necessitates setting a prior ror model via MCMC simulations. By contrast with MCMC sam
PDF ong, denotedpo. We will show in the following section how pling in P(6{SR}|Data), from which a histogram would have been
an analysis of the sensitivity of the results to the choice of the priocomputed to estimate the margind(6|Data), the Rao—Blackwell
on o can be easily performed thanks to the linearisation of theprocedure provides an accurate and precise estimation with-gener

© 2001 NRC Canada



Rivot et al. 2287

ally only a few hundred §R} simulated sets, because the posterior Table 1. Deterministic Ricker model in terms of natural parame

PDF P(6|Data) is estimated at each poiht ters @,b) or management-related parametets, §) and (C*,h*).
Posterior distributions of management-related Deterministic Ricker function
parameters (T1.1)

Schnute and Kronlund (1996) suggested that the Ricker functiol R=Se*"S f= %E ae]-oo,+ o, be]-oo,+ oo
could be rewritten in terms of management-related parameters. W\
focused on two of these parameter paip, = (C*,S*) and ¢5 =  Maximization of captures under equilibrium assumption
(C*,h*), defined as follows. Let us consider a sustainable popula
tion (i.e.,a > 0), with a SR relationship that is stable over time (T1.2) pS= §9-C (Equilibrium constraint)
(constantSR parameters), and submitted each year to a constar (f(S)- 9, _ .
exploitation of recruitment equal 1@ that produces an equilibrium B as IS™ 0 (Captures maximisation)

stateR — C= S whereS and R are expressed in the same unit ]
(adults, eggs,...). There is a single equilibrium state for whichTransformation gb) = g,(C*,S)
captures are maximum, denot€d, obtained for a stocl&, veri-

fying R* — C* = S* (T1.2 in Table 1). For eaclp; = (C*, ) in (T1.3) g  [Ost+ ¢ C*

]0,+[ x]0,+w[, a unique pair ,b) in ]0,+[ x]0,+eo[ can be de H= In PR
- X * S S+ C

duced through the closed transformatiagbf = g,(C*,S*) (T1.3 in ForC*>0andS >0, .

Table 1). Similarly, defining the exploitation rak& = C*/R*, each gjzci

$% = (C*,h*) in ]0,+o[ x]0,1[ corresponds to a unique pa,f) in S S + @

]0,+00[ x ]0,+co[ through the closed transformationa,ly) = . — % I
0,(C*,h*) (T1.4 in Table 1). Those transformations are non"nearTransformatlon 4b) = 6(C* )
and do not admit inverse closed-form expression (see Hilborr(T1.4) m=h* -In(1- H)
(1985) for inverse approximations). ForC*> 0 and 0 <h* < 1 U *2

¢ and ¢% are reference points for stock assessment and- mar ' E) =
agement. Under a constant exploitation rate harvesting strategy, Cx(1-H)
is the harvest rate corresponding to the maximum c&ttbn av-  jacobians
erage long term. Under a fixed escapement strat&jyis the

spawning escapement that should be reached to maximize the cat(T1.5) ~ Aab) | Cr(2% + ©)
on average long term. Thereby, by comparison with Hilborn and Ju(C*,S) = + |~ == 3
Walters (1992) or with Meyer and Millar (2000), who derived pos- acx, )| s (s + 9
terior PDFs for management parameters from the estimation o141 g "
natural parameters, reformulating the Ricker model as proposed t 3, (CHIY) = + da b) |_ h*°(2-H)
Schnute and Kronlund (1996) leads to straightforward inference: ' aC*, )| @-hv2cH?
on reference points helpful to managers.

Through the Rao—Blackwell formula, the posterior of the natu-(T1.7) AC*, 1) C*
ral parameters obtained with a uniform prior 8mnd a priorpo, Jiy(CH8) = + AC* ) = (C + 9)?
Puso(B|Data), can be used as a pivotal quantity to estimate posteric '
of management-related parametétsfor any prior on¢*. Bayes'’ Note: Transformations betweerCt,S¥) or (C*,h*) and (a,b) and

rule specifies that the posterior PDF of the management-related pibetween C*,S¥) and (C*,h*) are indicated together with the corresponding
rameters ¢* given all of the field data available, denoted Jacobians.

P_(¢*|Data), is proportional to the product of any prié(p*) with . . .
thpg(?iklelihoc))dP l:(Dgtalcb*) But congitioning upoﬁqﬁ Or(ql)J[ZOHG* the critical choice of prior PDFs. Whatever the set of parameters
b .

in the likelihood is equivalent when a one-to-one transformationUS€d, the simplicity of calculation highlighted in eq. 6 allows us to

& = g(¢*) exists. Finally, the IikelihoodeO(DataB*) is propor- focus our attention on the influence of their priors.
tional to the posterior PDIPy;(6*|Data) obtained with a uniform

prior on &%, where the proportionality constant depends on Dataparameters transformations and choice of prior

Switching from natural to management parameters entails fun
gamental modifications of model specification. Using management
parameters a priori assumes that the stock is capable of self-
replacement. Indeed, an equilibrium hypothesis supposes that re
cruitment exceeds spawning stock over some part of the range of
(6) Ppc,(q)*lData) 0 P(¢*) Ppg,o(e*IData) with 65 = g(¢*) possible stocks, constraining parameddo be positive. It also as

) ) sumes thab > 0. From a Bayesian point of view, these hidden as
We estimateP,,o(6*|Data), where®* = g(¢*) using the Rao—  symptions have deep implications in terms of prior specification in
Blackwell formula (eq. 5). Summarizing, the estimation of the-pos that using management parameters assigns null prior probability
terior of several parameters of interggtwith any prior on¢* is  for the rangea < 0 andb < 0. This point should be carefully exam
confined to the Rao—Blackwell estimate Bf;(6|Data). One can jned when proceeding to parameter transformation, particularly if
considerP,(6|Data) as the likelihood of our data conditioned by the posterior PDFP,,(6|Data) shows a nonzero probability over
our full model hypotheses: the Ricker model featuring the recruit the rangea < 0 andb < 0.

ment process and the probabilistic model describing measurement Beyond this formulation problem, the choice of priors remains

the integral of the right side of eq. 6 over the vec{drand de
pends on Data only.

errors from field data. one of the most controversial issues in Bayesian analysis (Box and
Tiao 1992; Gelman et al. 1995). Punt and Hilborn (1997) and Hill
Sensitivity analysis and Pyper (1998) advocate that noninformative priors are rot al

This working framework, based on the closed form of parametemways a good choice when they ignore available relevant biological
posterior distributionP;o(6{SR}) for the Ricker model used information. On the other hand, Walters and Ludwig (1994) and
within the Rao—Blackwell procedure, provides a rigorous analysisAdikson and Peterman (1996) warn against the use of informative
of sensitivity of posterior inferences to the parameterization andoriors because it may result in overly precise posteriors and undue
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confidence in management decisions arising from the analysis (agchniques from the posterior distribution of the 1984-1999 time
in Geiger and Koenings 1991). We then believe that two pointsseries of the number of spawners and the smolt outputs. From the
should be carefully addressed. First, a transparent approach cofatter, a sizeS sample from thedR time series §R} = {( S,R)},

sists in assessing the sensitivity of the posterior to the choice of the= 1,...n (n = 13), corresponding to the egg deposition of years
prior. Second, when switching between two parameterizations, it i4984 to 1996 and subsequent recruitment expressed in eggs, is de
also fundamental to assess what a prior PDF in one parameteluced via deterministic transformations adult-to-egg @rand
space signifies in the transformed parameter space. For instance smolt-to-egg (forR). These calculations use yearly biological char
uniform prior PDF on 4,b) transforms into an odd nonflat prior on acteristics of migrating populations issued from data collected at
(C*,S). For parametersa,b), we used a noninformative uniform the trap (river- and sea-age, size, sex ratio, fecundity of females)
prior P(a,b) over the full range Jee,+oo[ x ]—o0,+0o[ resulting in @  and are supposedly known without error. Finally, &llandR; are
posterior PDF primarily determined by the data via the likelihood.standardized for river size by dividing number of eggs spawned
To illustrate the influence of the prior of management- related paand recruited by the surface area of habitat available for juvenile
rameters on the posterior, we focused on tB& %) parameters.  production, i.e., 25 229 f(Prévost et al. 1996). This sequence of
We contrasted four prior assumptions: (1) a uniform PDF inoperations leads to a sizeé-sample generated froi({ SR}|Data)
(C*,S) space, (2) a prior in ¢*S*) space proportional to that can be used in the Rao—Blakwell formula (eq. 5) with the data
J;1(C*, S, the absolute value of the Jacobian of the transferma being the number of fish marked and recaptured marked er un
tion (a,b) = g;(C*,S) in T1.5 in Table 1, which corresponds to a marked.

uniform PDF in @,b) space over the restricted range> 0,b > 0

(this prior on C*,S*) corresponds to a noninformative prior in the Technical details

sense of Jeffrey as discussed in Box and Tiao (1992)), (3) a prior 1o empirically assess the influence of measurement errors for
in space C*,S) proportional to J5(C* ) in T1.7 in Table 1,  gach couple of parametersff), (C*, %), and (C*,h*), we compared
which corresponds to a uniform PDF in spa@ ), (4) a tWo-  the joint and marginal posterior PDFs obtained when accounting for
dimensional Normal prior for G*,S*) with arbitrary mean process errors only with those obtained when accounting for both

(3.5,4.75) and variance matfi= @) OH indicating thatC* and S process and measurement errors. The first ones are computed using
40 egs. A.3 and A.4 (in the Appendix), witBandR set to their most

are a priori noncorrelated with the same variance. likely values (posterior modes of the MCMC samples). Measure
ment errors are integrated out using the Rao—-Blackwell formula
Sensitivity to the choice of prior oa (eq. 5). To focus on the influence of measurement errors only, uni-

Within our methodological framework, an analysis of the sensi-form priors for @b), (C*,S"), and (C*,h¥) are used so that poste-
tivity of the results to the choice of prior on the nuisance parametefior PDFs best reflect information provided by the data only. The
o can also be easily conducted. As shown in the Appendix, we asPrior for o is taken to be noninformativeP(o) O o). o
sume a general structure for the prior onP(c) 0o, whereqis ~ We approximate the joint posterior PDFs as discrete distribu-
an integer. Under this assumptidPFIqo(9|Data) has a closed form tions on 300 x 300 two-dimensional grids, linearly spaced év)(
depending oy (see Appendix). The prior influence on posterior and log spaced forQ*, ) and (C* h*) in order to have a thinner
PDF for parametersa(b), (C*, "), and (C*,h*) can be assessed by grid when approaching 0. The grid ranges are
making q vary. We tested three different values= 0, 1, and 2. (ab) € [-3,+3] x [-0.2,+0.3]

lllustrative case study: Atlantic salmon stock and (C*,S") e[1 x 10517] x [1 x 105,18]
recruitment on the River Oir
We applied our methodological work to &R data set issuing (C*,h*) € [1 x 10-5,17] x [1 x 105,0.99999]

from the wild Atlantic salmon population of the River Oir. The
River Oir is a small tributary of the River Sélune, which flows into The probability in each point of the grid is normalized so that the
the Bay of Mont St. Michel (Lower Normandy, France). The stud discrete stairs estimate of the integral over the grid is equal to 1.
ied section is 11.5 km long from the trapping facility downstream Closed-form A.4 (Appendix) is used to compute the marginal pos
to an impassable dam upstream. The trapping facility catches thirior PDFs fora andb. For C* (couples C*, S*) and (C*, h¥)), S,
spawning adults and the smolt migrating out to the sea. No fishergnd h*, the marginal PDFs are computed by summation over the
occurs above the trap (Prévost et al. 1996). corresponding joint dimension of the grid. Posterior modes are in

Because the River Oir is only a spawning tributary of the Riverterpreted as “most likely values’x% highest posterior density
Sélune, there is no precise homing of adult salmon to the Oir (J.L(HPD) regions X% HPD regions) ox% intervals % HPD inter
Bagliniére, INRA, UMR-EQHC, Aquatic Ecology Laboratory, Vvals), i.e., regions or intervals that contai¥o of the probability,
Rennes, France, unpublished data). Recruitment cannot be deducaee deduced from the approximated PDFs on the grid. As advised
from the adult returns and we therefore estimate it from the smolby Walters and Ludwig (1994) and Adikson and Peterman (1996),
outputs. We convert adult spawning stock and smolt recruitmentve checked that broadening the grid range and increasing the num
into numbers of eggs. Indeed, for the calculation of managementoer of points does not affect results, especially when computing the
related parameters, it is necessary to express both variables in tfigarginal posterior PDFs fa€*, St, and h*. All calculations were
same unit and it is the egg deposition that is ultimately limiting for performed using MATLAB 6.0 software (MathWorks, Inc., Natik,
the size of the upcoming cohort (Prévost et al. 1996; Chaput et aMass.).
1998).

A detailed description of the field data collected and the mOdeIResults
used to derive posterior measurement error PDFsSfartime se
ries is given in Rivot (1998). We only summarize it briefly here be . .
cause it is not central to the present paper. For each year betweg[OCk and recrwtment_ p.OSte.nor PDFs . .
1984 and 1999, adults (in autumn) and juveniles (smolts, in spring T_h_e Orr (_jata set eX_h'b't a high contrast3ni.e., in €ggs de
were caught at the trap. Their number is estimated by captureR0sition (Fig. 1): estimated modes of stock posterior PDFs
mark—recapture experiments. A probabilistic model that mimics thdange from 2.7 eggsTh (1991) to 22.1 eggsTh (1984). R
capture—mark—recapture experiments as binomial draws has be#nodal values range from 1.6 eggs?r{1989) to 15.6 eggsTh
developed. A sample of siz& = 5000 is generated by MCMC (1984). Modal ¥R points are scattered between a “high
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point” with S = 22.1 andR = 15.6 eggs-nt (1984) and a Fig. 1. Box and whisker plots for the size-5000 Markov Chain
“low point” with S= 2.7 andR = 2.3 eggs-m’— (1991). Monte Carlo (MCMC) samples fronta) P{S}; - 1 o n |Data) and

Our estimation of recruitment is more precise than that ofb) P{R} = 1 on [Data). Stock and recruitment are in eggs:m
stock (Fig. 1). Posterior PDFs d® are relatively homoge The boxes have lines at the first quartile, the median, and the
neous in dispersion, and almost all are slightly asymmetri¢!pper quartile. The broken lines extending from each end of the
with a longer tail towards high values (see the shift betweerpox show the extent of the 95% posterior intervals. Symbals:
the mode and the median in Fig. 1). By contrast, the dispermodes; +, 2.5% and 97.5% percentiles). Kodal values of the
sion and asymmetry o posterior PDFs are highly variable MCMC samples for recruitment vs. stock.

between years (Fig. 1). Some distributions have small vari
ance and are relatively symmetric (years 1985, 1996), 1996 +@1-+ (a)
whereas others are more diffuse and skewed with a long tail 1995} 4+
toward high values (years 1987, 1994). 1994t A T—F+ — — — — — — — +
Contrary to the common hypothesis of homogeneity in 1993 | 4T+ —+
form and variance, our results clearly show that the nature of 1992 b —+
the measurement error PDFs varies from year to year ac 199 |4
cording to.the_fleld data available, becap§e uncertaint$ of g 1990haT - - — — —+
and R estimations depends on the efficiency of capture— >~ 1989 +
mark—recapture experiments. 1988 ot
o 1987+ T+ — — — +
Effect of measurement errors on estimation of parameters 1986 AT+ — — +
The integration of measurement errors as they are esti 1985 -+
mated by the MCMC s_ample only slightly increases parame 1984 T o
ter uncertainty. Posterior PDFs are rather more diffuse when
accounting for measurement errors, i.e., by integrating over 0 10 20 30 40 50 60 70 80 90
the posterior PDFs of and R, than those obtained with the Stock
most likely values forS and R (Figs. 2 and 3). However,
even with process errors only, uncertainty around all param- 1996 +ME+ + (b)
eters remains large. The effect of accounting for measure- 1995 A&+
ment errors on parameter uncertainty is more pronounced 1994 TEt
for the management-related parameters than for the natural 1993 S+
ones @,b). For the latter, impact of measurement errors on 1992 - —+
the diffusion of the joint posterior PDF is not obvious. 1991} -+
Ninety percent HPD regions cover approximately the same % 1990 &
range with measurement errors as with mo&84R values =
(Fig. 2a). The marginal distribution o& seems to be more 19891 4
sensitive than that df (Fig. 3). The 95% posterior interval of 1988 A
a is getting wider with measurement errors ([-0.29,1.44] 1987 A+
to [-0.71,1.29]), whereas the posterior intervalbafemains 1986 i
approximately the same width ([0.022,0.15] and 1985  #+
[0.0071,0.13]). With regards to management-related parame 1984 + A+
ters, HPD regions are wider when accounting for the uncer
tainty in S and R than with fixed modal values, especially 0 2 4 6 8 10 12 14 16 18 20
toward high values o8* and C* (couple (C*, h*)) as shown Recruitment
in Figs. -2c. The 95% posterior intervals @* and S+ are B
all broader with measurement errors than with modal values: 6k (©
[1.9,11.8] to [1.8,12.6] foS* and [0.24,7.7] to [0.17,8.7] for 4
C* (couple (C*, S)). Both marginal posteriors a8 and C* 14}
for both couples ¢*, S*) and (C*, h*) are skewed with a
Iong tail toward high values. By contrast, the uncertainty of _ 12} A
h* is not strongly affected by measurement errors (the 95%5 ok A
posterior interval changes from [0.070,0.62] to [0.062,0.61]). £ 4
Note that the left-hand tail curving upward of the marginal Z gl A, *
posterior PDFs oh* (Fig. 3) is not an artifact. The joint &
posteriorP(C*, h*|Data) increases whem* approaches 0, for or 4 A R
all values ofC* (owing to the highly nonstandard form of al
the likelihood in the spaceC#, h*)). This leads to an aceu
mulation of mass in the neighborhood lof = 0. 2| A R 4
Parallel to their slight increase in variability, posterior PDFs

obtained when taking into account measurement errors differ 0
in location from those obtained whé&wandR are set to their
modal values. Modes fa, b, C*, and h* decrease, whereas

2 4 6 8 10 12 14 16 18 20 22 24
Stock
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Fig. 2. Contour plots of 20% and 90% highest posterior density it increases forS. The joint mode for the couplea(b)

regions of ,b), (C*, S), (C*, h*) (a, b, ¢, respectively) obtained
accounting either for process error only, i.e., witand R set to
their modal values (broken line), or for both process and-mea
surement errors, i.eS andR are integrated out (solid line). Uni
form priors on the three parameter couples and noninformative

prior for o (q = 1) were used.
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changes from (0.57,0.089) to (0.15,0.052) with uncertainty
on SR data. The modes of the marginal posterior laws
(Fig. 3) significantly decrease faa (0.57 to 0.23) andb
(0.089 to 0.050). This results in a probability far< 0 that

is approximately 8.3% witl¥R modal values, whereas there
is much more chance tha < 0 when considering uncer
tainty in SandR (P(a < 0) =0.30). With regards to manage
ment-related parameters and particularly f6r,S), Fig. 2
highlights that the density is concentrated in the neighbor
hood of the origin of the grid (small values of parameters).
Accounting for errors in9R data results in modes of joint
distributions for C*, SF) and (C*, h*) that drastically shift
back towards very small values. The mode of the joint-pos
terior PDF of C*, h*) is located in (1.10,0.27) whe8andR

are set to their modes but cannot really be distinguished
from the grid origin with SR data uncertainty
((0.075,0.060)). The same tendency is observed for the
mode of the joint posterior PDF ofCf,S) ((1.15,3.03))
with modal §R values vs. (0.10,1.33) with measurement er
rors). The modes of marginal PDFs fGr and h* are differ-

ent from 0 and slightly decrease when accounting for
measurement errors (1.28 to 0.87 for from the couple
(C*, S and 0.35 to 0.30 foh*), whereas the location d&
tends to move up from 3.64 to 3.97 eggseitFig. 3).

Effect of switching from natural to management-related
parameters

In our case study, the resulting posterior PDFs are not robust
to the strong modification of priors induced when switching
from the natural parameterizationa,lf) to (C*,S*) or
(C*,h*). Working with management-related parameters a
priori puts O probability ona < 0. Based on the marginal
posterior PDF ofa in Fig. 3, the posterior probability that
a < 0, calculated with a uniform prior orafo) and account-
ing for measurement errors, is about 3026. andh* are by
definition positive, which implies that is also positive.
Thus, the 30% probability foa < 0 obtained with natural
(a,b) parameters is erased when switching to management-
related parameterization. However, the informatidt(d' <
0) # 0" has not totally vanished. Indeed, HPD regions for
(C*,S* and C*,h*) are both concentrated close to the-ori
gin of the grid (Fig. 2). In addition, marginal posterior densi
ties for C* and h* do not tend towards 0 whe@* and h*
approach 0 in the grid (Fig. 3). This suggests that although
we a priori excluded null value fo€* and h*, the state of
naturea < 0 remains likely in light of the data. In others
words, prior information introduced by the use of manage
ment-related parameters seems to be contradictory with the
data.

Sensitivity of posterior parameter PDFs to the prior PDFs
Posterior parameter PDFs are highly sensitive to the prior

PDFs. For instance, the marginal posterior PDFsObrand

S* can differ markedly according to the different priors
tested, as well for location and dispersion (Fig. 4). €on
sidering a uniform prior in theab) space and a uniform
prior in the C*,S*) space leads to drastically different-re
sults. The uniform prior onab) amounts to putting a very
high weight on small values o€* through the Jacobian
J,;1(C*,S*). This is still noticeable in the posterior PDF of
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Fig. 3. Marginal posterior density profiles corresponding to joint posterior density,bj (top), (C*, S¥) (middle), and C*, h*)
(bottom) obtained accounting for process errors only (broken line) or for both process and measurement errors (solid line). All are
obtained with uniform priors on the three parameter couples and with a noninformative prior(dor 1).
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(C*,S* once the information carried by the data has beer(3.5,4.75). By contrast, changing the mean of the normal
used to update the prior. The marginal posterior PDEEdDf  prior (we tried (5,6.25) and (2,2.25)) has no real influence
looks like an inverse function and has a narrower 95% interon posterior parameter PDFs.

val compared with other prior PDFs tested. The marginal For natural parameters as well as for management-related
posterior density o5* is nonnull whenS* approaches zero, ones, the analysis is not robust to the choice of the prior for
its mode decreases and the width of its 95% posterior-intero. Decreasing parametgrfrom 2 to 0 in the prioP(c) Jo™

val is reduced compared with posterior PDFs obtained wittdramatically increases the dispersion of the joint parameter
the other priors. By contrast, similar marginal PDFs are ob posterior PDFs. Ninety percent HPD regions for joint peste
tained with a uniform prior in the spac&€X,S*) or in the rior PDFs (Figs. 8-5c) and 95% posterior intervals for mar
space C*,h*) and with a prior equal to a two-dimensional ginal posterior densities (results not shown) get drastically
normal PDF. Locations remain nearly the same. Differencesvider with decreasing. On the other hand, changirghas

are more noticeable regarding posterior 95% credibility in practically no influence on the location of posterior PDFs.
tervals. The marginal PDFs change slightly when modifyingThis strong effect ofy on parameter uncertainty is directly
parameters of the two-dimensional normal prior (results notelated to the fact thaj plays a similar role as the number of
shown here). A larger variance (taking 62jleads to poste  observations in the degrees of freedom=n-2 + 2@ - 1)

rior marginal PDFs very similar to those obtained with thefor the multidimensional distribution A.3 (in the Appendix).
initial ~. Decreasing the variance of the prior (replacing 4 byConsequently, the greater tiqevalue, the higher the degrees

2 in 2) reduces dispersion of the posterior and makes botlof freedom and logically the smaller the diffusion of the pos
C* and S* posterior modes move towards the prior meanterior PDFs. This effect is especially marked in our case
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Fig. 4. Marginal posterior density profiles fo€* and S* obtained with different priors on parameters. Line styles indicate
the four priors investigated: solid line, uniform on the spa€s&, §9); dashed-dotted line, uniform on the spaaebj then pre
portional toJ,;(C*, S¥); dotted line, uniform on C*, h*) then proportional tal,,(C*, S*); dashed line, two-dimensional normal

N((3.5,4.75) 2 = % ?é on the space@*, S¥). Noninformative prior foro (q = 1) was used and measurement errors are integrated out.
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study in which 2¢ — 1) is not negligible compared with— 2  rior PDFs frees the modeler from making hypotheses
(n = 13). about the structure of measurement errors. Most often, such
hypotheses are almost impossible to justify whettieo
retically or by some checking against data. For instance,

Di ion . . .
scussio Walters and Ludwig (1981) need to fix the value of the ratio
Advantages and specificity of the Rao—Blackwell of the variances of measurement and process errors to be

procedure able to provide estimates o&R-related parameters by

Our Rao-Blackwell procedure (eq. 5) requires randonineans of total least-squares techniques. Owing to a
generation of measurement errors and a closed form for thBayesian treatment of their state—space model, Meyer and
likelihood (and also for the posterior PDF) of the parameterdVillar (2000) relax the previous hypothesis but still assume
Of interest When the Observations are assumed known_ W|tH:hat the form Of the measurement error d|Str|bUt|0n IS the
out errors. This restricts its range of application, especiallygame for all years (log-normal in their case study). More re
the second condition, but it is Compensated for by Sever@llstlc distributions of measurement errors can be SpeCIerd
advantages. from field data. In our case study, we account for the -vari

First, it allows the assessment of the effect of measureability from year to year in the form and dispersion of the
ment errors grounded on any kind of information that can beProbability distributions forS and R observations. Had we
formalized as PDFs. It uses a random sample of possible ot#ssumed log-normal errors with the same variance for all
servation values that can be constructed in many differenyears, much information coming from the field data would
ways, for instance using MCMC, bootstrapping, or jack-h'ave been dlscgrded and replaced by a Strong 'pI'IOI' hypothe
knifing techniques. Our recommended approach is to derivéis.- The posterior PDFs of parameters conditioned by the
such a sample from posterior measurement error PDFs bjpformation brought by the capture-mark—recapture experi
means of a probability model linking th®@ and R variables =~ Ments provide a more objective assessment of the uncertainty.
to the field data as in our illustrative case study. By compari Second, our method offers computational convenience to
son with the error-in-variable models of Ludwig andi®rs  perform the analysis of the influence of prior easily and rHgor
(1981) or with the more recent state—space model of Meyeously. Closed-form distributions provide an analytical basis to
and Millar (2000), simulating measurement errors from postediscuss prior hypotheses that underlie parameterization
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change and the choice of prior for process error variarfce  Fig. 5. Contour plots of 90% highest posterior density regions of
The analysis with prior distributions #&C*,S*) [01J,,(C*,S*) (ab), (C*, S, and (C* h*) (a, b, andc, respectively) obtained
would also be difficult to perform via more general MCMC with different priors for the standard deviation of the process er
sampling methods, which would hardly run with such fnon rors a. The generic form of the prior is proportional @9. Line
standard prior distributions. style defines different values fay as follows: dotted lineg = 0;
Lastly, our method produces smooth estimates of pa{am§olid line, q = 1; dashed lineq = 2. Posterior distributions are
ter posterior PDFs with modest computational effort. Thisperformed integrating out measurement errors. Uniform distribu
results from the fact that the posterior probability is calcu tions are used for the three parameter couples.

lated by averaging a closed form over a sample from the 1.6
posterior PDF of th&s/R variables (eq. 5). Smooth estimates

are not only esthetic. In our case study, marginal posterior 12
densities forC* or h* do not tend towards 0 whe@* or h*

approach 0. The Rao—Blackwell procedure provides precise 0.8
estimators for the densities over these limit domains that are '
critical for management considerations.

Owing to the above advantages, we advocate that Rao— S 04
Blackwell procedures similar to ours should be preferred to 0.0
full treatment of the model by MCMC techniques whenever :
possible. Full treatment by MCMC sampling would be used 4
to estimateP(B|Data) when no closed form for the likeli 0.
hood is available. 0.8

Effect of measurement errors on parameter uncertainty

In our case study, the effect of measurement errors on pa-
rameter uncertainty remains moderate. This interestingly
contrasts with the potentially disruptive effect of measure-
ment errors inYR analysis reported by Walters and Ludwig
(1981) or Hilborn and Walters (1992). Still, ignoring mea-
surement errors it and R observations leads to overesti-
mating the information available concerning the recruitment
process. Including measurement errors blurs the information
coming fromSR data, resulting in a looser fit d¥R curve
and a less precise assessment of parameters.

Our results, demonstrating that measurement errors are
not always a major concern for the estimatiorStiR- related
parameters, should be interpreted and generalized with cau
tion because they may be due to specific features of our case
study. Indeed, our data set is characterized by a high contrast
in Svalues. This is favorable to the robustness of parameter
estimates to measurement errors. By contrast with common
situations whereS/R observations are clustered in a small
portion of the potential range fo® (Hilborn and Walters
1992; Adikson and Peterman 1996), in our study the small
estSvalue is less than a tenth of the largest. Our estimation

0.14

of recruitment is also relatively accurate and less affected by 12

measurement errors than that of stock. Measurement errors (c)

for R comparable with those o8 would certainly lead to 10

more uncertain parameter estimates. However, we may have

overestimated the precision of o&® estimates in terms of 3

eggs because we ignore the uncertainty related to the transi

tion between the smolt stage and the subsequent eggs depo

sition. Indeed, we used a fixed average ratio of eggs 6 6

produced per smolt for the conversion of the number of

smolts into eggs. 4

Stock status considerations ’
Ignoring measurement errors gives an overly optimistic

view of the stock productive potential and underestimates [~ -

the risk associated with misspecification of biological refer 0
ence points. Accounting for measurement errors leads to 00 0.1 02 03 0': 05 06 0.7 0.8
smaller values for estimated parametarandb than those h
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obtained withS andR set to their modal values. This in turn itself. This important diagnosis, consistent with the pressure
yields a best-fit Ricker curve that ascends less rapidly at lovexerted by human activities on the Oir environment (Prévost
stock values (smalles) and shows less evidence of deelin et al. 1996), is a priori discarded when using management-
ing recruitment at large stock size (smaller i.e., lower related parameters. As a cautionary approach, we strongly
density-dependence effect). For the management-related peecommend first performing the analysis with natural parame
rameters, ignoring observation uncertainty by setttgnd ters @,b) before eventually switching to management-related
R to their most likely values leads to an overestimation ofparameterization, especially for low productivity stocks-sus
C* and h* (related to stock productivity) while underesti pected to be depleted.
mating S*. Not only the best estimates of parameters are af
fected, _but also the probability tha* or h* is under and  ~hgice of priors
that S* is above a certain threshold increases. As a conse . o .

In some instances where little is known a priori on param

guence, in a management-advice perspectiveStRanalysis . ;
without measurement error could promote overexploitation. eters value§, the Bayesian approa.ch offe.rs th_e opportunity to
define noninformative priors. This choice is appropriate

These assessments of the measurement error bias remaifien attempts to define a meaningful informative prior may

nggécg:; tLr;deggén?th ?gS:rewﬁvg%annorfoitm%vav?ﬁ;ttggcgllj ppear as a desperate quest, as for the standard deviation of
P ' P The process errorsg. Our results highlight that although

ing for measurement errors results in more accurate paramgten overlooked, the choice of a prior for this nuisance pa

Legcgjégnt%téondeTgﬁ drgr?lilr:z n?gg\sﬁr:rigrr]l?tertr)grsgtﬁgﬁﬁa}gzee meter may be of great significance even if it vanishes from
y dep e final interpretation after integrating over it. This should

mated in our particular case study. However, they are consisoe an incentive to elicit a meaningful prior PDF for but

tent with more theoretical studies dealing with the effect of : e
measurement errors on the estimatiorStR(:;related parame _probably too -“tﬂe 'S St"-l kr_u_)wn about the process generat
ing the recruitment variability to do so. The process error

ters (Walters and Ludwig 1981; Hilborn and Walters 1992). has in itself a formal nature with no real experimental

grounds to assess relative degrees of belief of different val-

Sensitivity of posterior PDFs to prior inputs ues before proceeding to ti#R analysis. The modeler has

The present work reveals that specification of priors redittle opportunity to propose a realistic variance structure and
mains of primary importance. In agreement with Adiksonwe recommend a conservative choiceqof 0 orq = 1 for a
and Peterman (1996), we contend that any Bayesian apess informative prior of the forns™@ (preserving the analyt-
proach to determin&R-related parameters should examineical simplification ensuing from this form).
in detail the prior implementation process. Prior inputs in the  To summarize, should a noninformative prior be the de-
analysis, as parameterization (e.g., natural vs. managemeffyit choice in any case? The answer is a qualified no. A
related) or prior PDFs of the parameters of direct interest oponinformative prior can become hard to interpret when
treated as nuisance can have a major influence on the resuliginsiated into another parameterization. When proceeding
when facing little informative data such &R series (few o parameter transformation, careful consideration must be
data points highly scattered by measurement and procegfven to the implications in terms of priors. Our approach

stochastic errors). forces a decision regarding which of the parameter pairs,
_ natural onesg,b) or management-related ones, should be of
Choice of parameters primary concern. For Box and Tiao (1992), a noninformative

We warn against systematically ignoring natural parameterprior should be used as a reference to judge what kind of un
(a,b), especially in cases where the stock productivity is lowprejudiced inference can be drawn from the data. In our case
as in the Oir salmon population. Management-related-parastudy, a uniform PDF onalb) seems to correspond to this
meterizations do not allow us to check for the long-termdefinition. It is not only noninformative in the sense of
sustainability of populations. Schnute and Kronlund (1996)Jeffrey (Box and Tiao 1992), but it also seems to bring little
advocated that management-related parameters should hawméormation into the analysis. When changing parameters
priority over natural onesa(b) because they have direct rele (a,b) into (C*,S*), the prior could be adjusted by transform
vance to management. We agree in the sense that these jiag the uniform prior on &,b) into a prior on C*,S*) pro-
rameters provide more direct links between populatiorportional to J,;(C*,S*). We argue that this prior is not
dynamic and regulation of the exploitation. For instance, fomoninformative in the space&C{,S*) in the sense that the-dn
the Atlantic salImon populations of Brittan$* is used as a formation that it carries, i.e., a huge weight on very snell
spawning target an€* is used to set total allowable catch and S* values (see the high degree ®f and C* in the de
(TACs) on a river-by-river basis. However, switching from pa nominator of J,;(C*,S*)), overcomes information brought
rameters 4,b) to (C*,S*) or (C*,h*) dramatically changes the by the data. What brings about little information in the space
model specification. It amounts to the strong prior assumptiorfa,b) becomes informative in the spac€*(S*). Hence, we
that the population is able to at least replace itself in the abjoin Box and Tiao (1992) in contending that each
sence of exploitation, i.eR(a < 0) is null. In our case study, parameterization must be considered for its own merits and
this assumption is contradictory with the posteriorthe form of noninformative prior input depends on the
information provided by the analysis witha,p) using a parameterization considered. In other words, as proposed by
noninformative uniform prior which states that< 0 anda > Schnute and Kronlund (1996) foCt,h*), it is relevant to
0 are almost equally likely events. Then, it would be highlyseek another form of noninformative prior regarding
probable that the Oir salmon population is not able to replac€C*,S*), without reference togb).
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Appendix

A closed form for P, o(6{S,R}): treating the Ricker model as linear
Considering §R} as observable known without error, we assBgsq(6|{ SR}) by using classical results of linear models.
The linear form is obtained by rearranging the logarithm of the Ricker relation (eq. 1). Equation A.1 defines a linear model

A.2 with a two-dimensional mean parameter %E We rigorously need the strong assumption that th& II§) are inde-

pendently distributed with a constant variance. Although this hypothesis is neither supported by theoretical consideration nor
verified experimentally because process and measurement errors occur simultaneously, it is commonly used (see Quinn anc
Deriso (1999) for a discussion). Note that here, we made the hypothesisSRhtafe measured without error, i.e., only re-
cruitment process errors are considered. Under this hypothesis, the least-square procedure provides unblasedeestlmators
(Quinn and Deriso 1999). Box and Tiao (1992) provide the analytical expression of the postériategfrated oveo assum-

ing a joint prior for @,0), P(6,0) 0 o™. We performed calculation witR(6,0) [ 079, whereq is an integer. This corresponds to
independent priors fo and g, with P(68) uniform on ]-eo;+co[ x ]—oo;+0o[, that is noninformative for the mean of a linear

model and withP(c) 0 6% g = 1 corresponds to a noninformative prior anUnder those assumptions the closed form for
posterior PDFP,;o(6[{SR}) is given by eq. A.3. Marginal PDFs foa andb have closed-form expressions (eq. A.4).

Table Al. Treatment of the Ricker model as linear.

Linear model
(A.1) =In(R/S)=Y,=a—-bS§+w fori=1ton
(A2 BﬁE 1 -SlD H4H
0 g=4 D%% O' Othatis,Y=X-8+W
% 8 -5 ™0 Buf

Notations

k=2,v=n-k+2g-1),6= %‘E EﬁlBands2 are the maximum likelihood

.1

estimates o and ¢, respectivelyT = (X'X)/s? is the approximate precision

;. TpO
matrix with partitionT = g]_ll 12 0 T1= (Tog = Tip T 1T,
1 T22[

Posterior PDFs
(A.3)
Poso(B{S B) =

33 \T\z (W + K/2) EEEE+ (6-9'T GG_Q)H_@%E

EurﬂL(vlz) -0z & (=4
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Table Al (concludegl.

(A.4)

gﬂ ‘Tl‘z (v +1)/ 2) %EE (8, - )2 [T, E%E

Pooo(Bl{S B) = 0k

E%(vm -z L

(Marginal of b is obtained by permutation of indices 1 to 2)

0

I is the Gamma functiof(x) :J'y"‘1 7Y Ody
0

Note: Equations A.3 and A.4 are closed-form expressions of joint posterior and marginal PDFs, under prior
assumptions of a uniform prior or,b) and P(o) O o™ (see Box and Tiao (1992) for more details). Note that
whenq = 1, P, o(8[{SR}) is a multivariatet distribution withv = n — 2 degrees of freedom, location vectr
and precision matrixd. Marginal posterior PDFs ai andb are both Student’s distributions with= n -2
degrees of freedom, location vectd¥g and 0,, and precisionl, and T,, respectively.
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