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Abstract: We present a Bayesian approach of a Ricker stock–recruitment (S/R) analysis accounting for measurement
errors onS/R data. We assess the sensitivity of posterior inferences to (i) the choice of Ricker model parameterizations,
with special regards to management-related ones, and (ii ) prior parameter distributions. Closed forms for Ricker param-
eter posterior distributions exist givenS/R data known without error. We use this property to develop a procedure based
on the Rao–Blackwell formula. This procedure achieves integration of measurement errors by averaging these closed
forms over possibleS/R data sets sampled from distributions derived from a stochastic model relating field data to the
S and R variables. High-quality Bayesian estimates are obtained. The analysis of the influence of different
parameterizations and of the priors is made easier. We illustrate our methodological approach by a case study of
Atlantic salmon (Salmo salar). Posterior distributions forS and R are computed from a mark–recapture stochastic
model. Ignoring measurement errors underestimates parameter uncertainty and overestimates both stock productivity
and density dependence. We warn against using management-related parameterizations because it makes the strong
prior assumption of long-term sustainability of stocks. Posterior inferences are sensitive to the choice of prior. The use
of informative priors as a remedy is discussed.

Résumé: Nous présentons une analyse Bayesienne d’un modèle stock–recrutement (S/R) de Ricker qui intègre les
erreurs de mesure sur les donnéesS/R. Nous étudions la sensibilité des inférences a posteriori (i) à différentes paramé-
trisations du modèle de Ricker, notamment à celles reliées à la gestion, et (ii ) aux distributions a priori sur les paramè-
tres. Conditionnellement à une sérieS/R connue sans erreur, les distributions a posteriori des paramètres peuvent
s’exprimer analytiquement. Nous développons une procédure de Rao–Blackwell qui s’appuie sur cette propriété. Les
erreurs de mesure sont intégrées en moyennant ces formes analytiques sur un échantillon de sériesS/R tirées dans leur
distribution a posteriori issue d’un modèle stochastique reliant les données de terrain aux variablesS et R. Les estima-
teurs bayesiens obtenus sont de grande qualité et l’étude de sensibilité aux choix des différentes paramétrisations et des
priors est facilitée. Nous illustrons notre approche méthodologique par un cas d’étude sur le Saumon atlantique (Salmo
salar). Les distributions a posteriori deS et R sont issues d’un modèle probabiliste de capture–recapture. Ignorer les
erreurs de mesure sous-estime l’incertitude et surestime la productivité du stock et la densité dépendance. Nous ne
recommandons pas l’utilisation systématique des paramètres reliés à la gestion car cela nécessite l’hypothèse a priori
que le stock peut se renouveler seul. Les inférences a posteriori sont sensibles au choix des priors. L’utilisation de
priors informatifs pourrait permettre d’y remédier.
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Introduction

The analysis of the relationship between stock (S) and re-
cruitment (R) (S/R relationship) is critical for setting biological
or management reference points, especially for semelparous
species such as salmon (Kennedy and Crozier 1993; Chaput

et al. 1998; Schnute et al. 2000). Hilborn and Walters (1992)
listed various sources of uncertainty and statistical pitfalls
that preclude reliable estimation ofS/R model parameters.
These problems have been dealt with in more detail by sev-
eral authors and statistical remedies can be proposed for
most of them. Walters (1985) addresses the bias induced by
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nonrepresentative sampling in theS variable. An analysis of
nonstationarity of theS/R relationship is provided by Walters
(1987). Temporal autocorrelation in theS/R series has also
been analyzed (Walters 1990; Korman et al. 1995). Theoreti-
cal studies have shown that measurement errors in bothS
andR (observation errors) may induce strong bias in param-
eter estimates (Walters and Ludwig 1981). This bias possi-
bly entails mistakenS/R adjustments, which may in turn lead
to disastrous stock assessment and management (Ludwig and
Walters 1981; Hilborn and Walters 1992; Schnute 1993).

In the present paper, we address three main issues con-
cerningS/R analysis based on the Ricker model (Hilborn and
Walters 1992) using a Bayesian approach. First, we propose
an original method to assess the effect of measurement er-
rors onS/R parameter uncertainty when measurement errors
are described by a probability distribution function (PDF).
We advocate and demonstrate the use of posterior PDFs con-
ditioned by field data, even though our method can be applied
regardless of how measurement error PDFs are obtained. Pos-
terior PDFs advantageously replace restrictive and some-
times unfortunate hypotheses on the form of measurement
errors that usually occur. Next, we highlight the ins and outs
of expressing the Ricker model directly in terms of manage-
ment-related parameters. Lastly, we discuss a point that few
studies have addressed, that is, how prior hypotheses, includ-
ing a “noninformative prior” on nuisance parameters that are
integrated out (Walters and Ludwig 1994), may influence
posterior inferences. For each issue, the implications for sta-
tistical estimation ofS/R-related parameters and for manage-
ment advice are emphasized. We adopt the Bayesian setting
because it offers conceptual rigor for quantitatively describing
uncertainties in the states of nature (Ellison 1996; Hilborn
and Mangel 1997; Punt and Hilborn 1997). The Bayesian
framework is also naturally linked with decision and risk
analysis (Francis and Shotton 1997; McAllister and
Kirkwood 1998; Robb and Peterman 1998).

The Ricker model is widely used inS/R analysis, especially
for salmonids (Kennedy and Crozier 1993; Hill and Pyper
1998). Although other density-dependent relationships are
also commonly utilized (e.g., Beverton–Holt or Schnute–
Deriso models), we focused our attention on the Ricker
model for three reasons. First, in real case studies, it is most
often illusive to choose among differentS/R models in the
light of the data (Walters and Korman 2001). Indeed, (i) the
S/R curves are surrounded by a large amount of residual
variability (Hilborn and Walters 1992), and (ii ) the shape of
the S/R curves differ mainly at highS levels for which there
are often very few observations (Kennedy and Crozier 1993;
Chaput et al. 1998). Second, adjusted curves often exhibit
very similar form in the range that determines management
and biological reference points (Schnute and Kronlund
1996). Third, the Ricker model offers the advantage of being
easily linearized. We seize this opportunity to propose a sim-
ple and efficient procedure to account for measurement er-
rors and to address our two additional main issues within a
rigorous mathematical framework.

For aS/R data set known without error, treating the Ricker
model as a linear one allows the derivation of an analytic ex-
pression for the parameter posterior PDFs. We take full ad-
vantage of this mathematical convenience offered by the
Ricker model in terms of closed-form calculation and develop

a two-step Bayesian procedure forS/R parameter estimations
that clearly distinguishes both sources of uncertainty, mea-
surement errors, and process errors (i.e., “natural” variations
of the recruitment process). The first step consists in quanti-
fying measurement errors onS and R via probability distri-
butions conditioned on yearly field data. In the second step,
we introduce the measurement errors via a Rao–Blackwell
formula, while simultaneously accounting for process errors.
We show how the Rao–Blackwell formula uses a tricky
combination between simple averaging over a sample in the
posterior distribution ofS andR and the analytic expression
of the posterior parameter distribution, available when treat-
ing the Ricker model as a linear one. The Rao–Blackwell
procedure is more specific than general Monte Carlo
Markov Chain (MCMC) simulation methods that may be
used with other “nonlinear”S/R relationships. However, it
has two main advantages. First, it provides very high quality
estimators for Bayesian posterior PDFs with modest compu-
tational effort. Second, it is based on closed-form expres-
sions in which the influence of the priors and of different
parameterizations appears analytically, thus allowing the
evaluation of the consequences of implicit hypotheses made
in BayesianS/Ranalysis.

We again take advantage of the easy manipulation of the
Ricker model to compare the standard expression of the
Ricker functionR = Sea–bS, with formulations inspired from
Schnute and Kronlund (1996) involving parameters directly
related to management, for instance the stockS* producing
maximum sustainable yieldC*. These authors advocated
management-related parameterization ofS/Rmodels because
it reduces statistical bias and is more robust to the choice of
the deterministicS/Rfunction. We extend their study by ex-
amining whether it makes sense to systematically replace the
natural Ricker parameterization (a,b) by a management-
related one. We discuss this point from a Bayesian point of
view, studying the consequences of switching parameterization
in terms of prior parameter specification. We extend the sen-
sitivity analysis to the influence of prior specification of the
nuisance parameter. The analysis of the influence of prior
assumptions is highly facilitated by the use of the Rao–
Blackwell formula, which allows us to separate the prior and
the likelihood in the analysis and to work with nonstandard
and improper prior PDFs.

We illustrate our methodological work by applying the
tools that we developed to a case study on the 13-yearS/R
data set of the River Oir (Lower Normandy, France) Atlantic
salmon (Salmo salar) population. Posterior distributions ofS
(spawning adults) andR (measured as young fish or
“smolts” migrating to the sea) are obtained by means of a
model working from capture–mark–recapture data. Our case
study has no pretence to provide a systematical analysis of
measurement error bias; rather, we point out how our ap-
proach of measurement errors could be transposed to any sit-
uation, provided that a sample from the PDFs describing
observation errors is available, without restriction on the
form of these distributions. Indeed, probability distributions
quite often can be set for observations, at worst from expert
judgment and at best from field data through the statistical
procedures used to estimate stock and recruitment. The deri-
vation of the measurement error PDFs is not central to our
purpose. Hence, to stay focused on the three main issues

© 2001 NRC Canada

Rivot et al. 2285

J:\cjfas\cjfas58\cjfas-11\F01-167.vp
Wednesday, November 14, 2001 11:13:50 AM

Color profile: Disabled
Composite  Default screen



previously mentioned, in this paper we do not detail the ob-
servation error model that leads to posterior PDFs forS and
R in our case study. The interested reader can refer to Rivot
(1998) for a detailed description of this model.

Material and methods

Problem formulation: Bayesian conditional reasoning
allows splitting measurement and process errors

The key point of our modeling strategy is the assembling of two
models in which the series of stock–recruitment pairs {Si,Ri}, i = 1
to n (hereafter denoted {S,R}), are alternatively considered as un-
known parameters and as observed variables. These two different
statuses forS/R series are combined to compute the parameter pos-
terior PDF. On one hand, in a first stochastic model describing
measurement errors, series of nonobservedS andR pairs {S,R} are
considered unknown multidimensional random variables with a
posterior PDF conditioned by all field data available, denoted
P({ S,R}|Data) (the notationP(X|Y) denotes the conditional proba-
bility distribution of the variableX given Y). More precise consid-
erations about this posterior distribution will be given when
presenting the case study. On the other hand, in a second model ac-
counting for process errors, {S,R} are considered as observed vari-
ables. The Ricker model in its natural form (eq. 1) describes the
recruitment process:

(1) R S a bS w i ni i i i= − + =exp( ), 1 to

whereSi is the stock for yeari, Ri is the subsequent recruitment,

θ = a
b









 denotes the two-dimensional Ricker parameter vector, and

a andb belong to ]–∞,+∞[. Although the caseb < 0 leading to an
exponential growth of the population is highly improbable, we do
not reject it a priori. Multiplicative log-normal process errorsewi ,
where thewi are independent random variables normally distrib-
uted with mean 0 and standard deviationσ, represent the
stochasticity of recruitment process. We deliberately ignored
interannual dependence betweenS and R to simplify the problem
formulation and stay focused on our main issue, the treatment of
measurement errors (see Korman et al. (1995) or Meyer and Millar
(2000) for more recent work about this problem). The log-
normality of process errors has been justified on theoretical
grounds (Peterman 1981; Hilborn and Walters 1992; Shelton 1992)
and has been shown to be consistent with observed data for
salmonids (Bradford 1995).

The posterior PDF for our model parameters (θ,σ) given the ob-
served data, denotedP(θ,σ|Data), results from the integration over
{ S,R} of the joint posterior of all the unobservables, i.e., the pa-
rameters (θ,σ) and the variables {S,R}. Rewriting the joint PDF
P(θ,σ,{ S,R}|Data) as the product ofP(θ,σ|{ S,R},Data) and
P({ S,R}|Data) and assuming that, given {S,R}, the law of (θ,σ) is
independent of the data, this PDF reads

(2) P P S R P S R S R
S R

( , | ) [ ( , { , }) ({ , }| ] { ,
{ , }

θ σ θ σ|Data Data) d= ∫ }

As advised by Geiger and Koenings (1991) and Walters and Lud-
wig (1994), we limit the number of parameters to estimate by treating
the standard deviation of process errorsσ as a nuisance parameter.
Therefore, the posteriorP(θ,σ|{ S,R}) in eq. 2 is integrated across
all possible values ofσ in ]0,+∞[. This provides a more accurate
assessment of uncertainty aroundθ than would be obtained by as-
suming a particular value for the nuisance parameter (Walters and
Ludwig 1994). This integration overσ necessitates setting a prior
PDF onσ, denotedpσ. We will show in the following section how
an analysis of the sensitivity of the results to the choice of the prior
on σ can be easily performed thanks to the linearisation of the

Ricker model. The marginal posterior PDF forθ of ultimate inter-
est is

(3) P P S R P S R S Rp pS Rσ σθ θ|( | ) [ ( { , }) ({ , }| ] { ,
{ , }

Data Data) d= ∫ }

wherePpσ(θ|{ S,R}) is the marginal posterior ofθ under the prior
distributionpσ. The second factor of the right member of eq. 3 rep-
resents uncertainty on {S,R} given the field data, i.e., measurement
errors. The first one brings the recruitment process uncertainty into
the analysis.

It must be noted here that eq. 3 can still be used in any case
where a probability distributionP({ S,R}|K) conditional to any
knowledge denoted byK can be derived. Even if the analyst is left
with only a time series of point estimates forS/R data, such a dis-
tribution P(·|K) can always be derived from a formalisation, even
the simplest one, of the knowledge that one has about the way in
which the observations are collected. In such a general case, the
conditional probability of interest (eq. 3) becomes

P K P S R P S R K S Rp S R pσ σθ θ( | ) [ ( |{ , } ({ , }| )] { , }
{ , }

= ∫ d

Because the most interesting case is when a posterior PDF of mea-
surement errors can be derived from field data and in order not to
multiply notations, in the rest of the text measurement errors PDF
will always be denotedP({ S,R}|Data).

Several methods exist to get out of this integration over mea-
surement errors in eq. 3. Numerical MCMC techniques are the
most commonly applied. However, when using the Ricker model,
more efficient (i.e., high precision is attained with low computa-
tional effort) posterior estimations can be obtained by combining a
Monte Carlo method with an analytical expression. Indeed, when
conditional PDFs are available in closed form, additional advan-
tages can be taken from outputs simulated via MCMC techniques
through the Rao–Blackwell formula (Gelfand and Smith 1990). We
introduce this method with a very simple example. Let us define
two random quantitiesA and B, with joint PDF P(A,B), and sup-
pose that we are interested in the marginal posterior ofA. Suppose
that we know that the conditional PDFP(A|B) is explicitly known
in a closed form and that a sample {B(g), g = 1,…,G} of size G has
been generated from the posterior distribution ofB. Then, a high-
quality estimator for the posterior PDFP(A) can be derived from
the sampleB(g) by the Monte Carlo integration:

(4)
=

=
∑1

1G
P A B

g

G
g[ ( | )]( )

This procedure is easily applied to our case study. Indeed, condi-
tionally to a S/R data set {S,R} supposedly known without error,
the Ricker model can be conveniently expressed as a linear one
(see Appendix). Therefore, under the hypothesis of a uniform prior
on (a,b) and a particular priorpσ, the first term of the right mem-
ber of eq. 3 has a closed form, denotedPpσ,0(θ|{S,R}), as shown in
Appendix (the subscriptspσ and 0 stand for the prior onσ and the
uniform prior on θ, respectively). Then, from the Rao–Blackwell
formula, a high-quality estimator forPpσ,0(θ|Data) is computed by
approximating the integral (eq. 3) as follows:

(5) P
G

P S Rp
g

G

p
g

σ σθ θ, ,
( )( | ) [ ( |{ , } )]0

1
0

1
Data = ∑

=

where the sum is over a “sufficiently large number”G of samples
{ S,R} (g), g = 1,…,G, generated from the densityP({ S,R}|Data). It
is straightforward to obtain such a sample from an observation er-
ror model via MCMC simulations. By contrast with MCMC sam-
pling in P(θ,{ S,R}|Data), from which a histogram would have been
computed to estimate the marginalP(θ|Data), the Rao–Blackwell
procedure provides an accurate and precise estimation with gener-
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ally only a few hundred {S,R} simulated sets, because the posterior
PDF P(θ|Data) is estimated at each pointθ.

Posterior distributions of management-related
parameters

Schnute and Kronlund (1996) suggested that the Ricker function
could be rewritten in terms of management-related parameters. We
focused on two of these parameter pairs,ϕ1* = (C*,S*) and ϕ2* =
(C*,h*), defined as follows. Let us consider a sustainable popula-
tion (i.e., a > 0), with a S/R relationship that is stable over time
(constantS/R parameters), and submitted each year to a constant
exploitation of recruitment equal toC that produces an equilibrium
stateR – C = S, where S and R are expressed in the same unit
(adults, eggs,…). There is a single equilibrium state for which
captures are maximum, denotedC*, obtained for a stockS*, veri-
fying R* – C* = S* (T1.2 in Table 1). For eachϕ1* = (C*,S*) in
]0,+∞[ × ]0,+∞[, a unique pair (a,b) in ]0,+∞[ × ]0,+∞[ can be de-
duced through the closed transformation (a,b) = g1(C*,S*) (T1.3 in
Table 1). Similarly, defining the exploitation rateh* = C*/R*, each
ϕ2* = (C*,h*) in ]0,+∞[ × ]0,1[ corresponds to a unique pair (a,b) in
]0,+∞[ × ]0,+∞[ through the closed transformation (a,b) =
g2(C*,h*) (T1.4 in Table 1). Those transformations are nonlinear
and do not admit inverse closed-form expression (see Hilborn
(1985) for inverse approximations).

ϕ1* and ϕ2* are reference points for stock assessment and man-
agement. Under a constant exploitation rate harvesting strategy,h*
is the harvest rate corresponding to the maximum catchC* on av-
erage long term. Under a fixed escapement strategy,S* is the
spawning escapement that should be reached to maximize the catch
on average long term. Thereby, by comparison with Hilborn and
Walters (1992) or with Meyer and Millar (2000), who derived pos-
terior PDFs for management parameters from the estimation of
natural parameters, reformulating the Ricker model as proposed by
Schnute and Kronlund (1996) leads to straightforward inferences
on reference points helpful to managers.

Through the Rao–Blackwell formula, the posterior of the natu-
ral parameters obtained with a uniform prior onθ and a priorpσ,
Ppσ,0(θ|Data), can be used as a pivotal quantity to estimate posterior
of management-related parametersϕ* for any prior on ϕ*. Bayes’
rule specifies that the posterior PDF of the management-related pa-
rameters ϕ* given all of the field data available, denoted
Ppσ(ϕ*|Data), is proportional to the product of any priorP(ϕ*) with
the likelihoodPpσ(Data|ϕ*). But conditioning uponϕ* or upon θ*
in the likelihood is equivalent when a one-to-one transformation
θ* = g(ϕ*) exists. Finally, the likelihoodPpσ(Data|θ*) is propor-
tional to the posterior PDFPpσ,0(θ*|Data) obtained with a uniform
prior on θ*, where the proportionality constant depends on Data
only. Thus, the posterior ofϕ* obtained with any priorP(ϕ*) is
given by eq. 6 where the proportionality constant is the inverse of
the integral of the right side of eq. 6 over the vectorϕ* and de-
pends on Data only.

(6) Ppσ(ϕ*|Data) ∝ P(ϕ*) Ppσ,0(θ*|Data) with θ* = g(ϕ*)

We estimatePpσ,0(θ*|Data), whereθ* = g(ϕ*) using the Rao–
Blackwell formula (eq. 5). Summarizing, the estimation of the pos-
terior of several parameters of interestϕ* with any prior on ϕ* is
confined to the Rao–Blackwell estimate ofPpσ,0(θ|Data). One can
considerPpσ,0(θ|Data) as the likelihood of our data conditioned by
our full model hypotheses: the Ricker model featuring the recruit-
ment process and the probabilistic model describing measurement
errors from field data.

Sensitivity analysis
This working framework, based on the closed form of parameter

posterior distributionPpσ,0(θ|{S,R}) for the Ricker model used
within the Rao–Blackwell procedure, provides a rigorous analysis
of sensitivity of posterior inferences to the parameterization and

the critical choice of prior PDFs. Whatever the set of parameters
used, the simplicity of calculation highlighted in eq. 6 allows us to
focus our attention on the influence of their priors.

Parameters transformations and choice of prior
Switching from natural to management parameters entails fun-

damental modifications of model specification. Using management
parameters a priori assumes that the stock is capable of self-
replacement. Indeed, an equilibrium hypothesis supposes that re-
cruitment exceeds spawning stock over some part of the range of
possible stocks, constraining parametera to be positive. It also as-
sumes thatb > 0. From a Bayesian point of view, these hidden as-
sumptions have deep implications in terms of prior specification in
that using management parameters assigns null prior probability
for the rangea < 0 andb < 0. This point should be carefully exam-
ined when proceeding to parameter transformation, particularly if
the posterior PDFPpσ,0(θ|Data) shows a nonzero probability over
the rangea < 0 andb < 0.

Beyond this formulation problem, the choice of priors remains
one of the most controversial issues in Bayesian analysis (Box and
Tiao 1992; Gelman et al. 1995). Punt and Hilborn (1997) and Hill
and Pyper (1998) advocate that noninformative priors are not al-
ways a good choice when they ignore available relevant biological
information. On the other hand, Walters and Ludwig (1994) and
Adikson and Peterman (1996) warn against the use of informative
priors because it may result in overly precise posteriors and undue

© 2001 NRC Canada
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Deterministic Ricker function

(T1.1)
R = S·ea–bS, θ = a

b








, a e ]– ∞,+ ∞[, b e ]– ∞,+ ∞[

Maximization of captures under equilibrium assumption

(T1.2) S f S C
f S S

S
S

= −
∂ −

∂
=

θ

θ

( )
( ( ) )

*

(Equilibrium constraint)

(C0 aptures maximisation)







Transformation (a,b) = g1(C*,S*)

(T1.3)

For C* > 0 and S* > 0,
a

S C

S

b
C

S S C

C

S C
= +









=
+










+
+

ln
* *

*

*

*[ * *]

*

* *

Transformation (a,b) = g2(C*,h*)

(T1.4)

For C* > 0 and 0 <h* < 1,

a h h

b
h

C h

= − −

=
−







* ln( *)

*

*( *)

1

1

2

Jacobians

(T1.5)
J+1(C*,S*) = + ∂

∂
= +

+
( , )

( *, *)

* ( * *)

* ( * *)
a b

C S

C S C

S S C

2
2 3

(T1.6)
J+2(C*,h*) = + ∂

∂
= −

−
( , )

( *, *)

* ( *)

( *) *
a b

C h

h h

h C

2

2 2

2

1

(T1.7)
J+3(C*,S*) = + ∂

∂
=

+
( *, *)
( *, *)

*

( * *)
C h

C S

C

C S 2

Note: Transformations between (C*,S*) or (C*,h*) and (a,b) and
between (C*,S*) and (C*,h*) are indicated together with the corresponding
Jacobians.

Table 1. Deterministic Ricker model in terms of natural parame-
ters (a,b) or management-related parameters (C*,S*) and (C*,h*).
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confidence in management decisions arising from the analysis (as
in Geiger and Koenings 1991). We then believe that two points
should be carefully addressed. First, a transparent approach con-
sists in assessing the sensitivity of the posterior to the choice of the
prior. Second, when switching between two parameterizations, it is
also fundamental to assess what a prior PDF in one parameter
space signifies in the transformed parameter space. For instance, a
uniform prior PDF on (a,b) transforms into an odd nonflat prior on
(C*,S*). For parameters (a,b), we used a noninformative uniform
prior P(a,b) over the full range ]–∞,+∞[ × ]–∞,+∞[ resulting in a
posterior PDF primarily determined by the data via the likelihood.
To illustrate the influence of the prior of management- related pa-
rameters on the posterior, we focused on the (C*,S*) parameters.
We contrasted four prior assumptions: (1) a uniform PDF in
(C*,S*) space, (2) a prior in (C*,S*) space proportional to
J+1(C*,S*), the absolute value of the Jacobian of the transforma-
tion (a,b) = g1(C*,S*) in T1.5 in Table 1, which corresponds to a
uniform PDF in (a,b) space over the restricted rangea > 0, b > 0
(this prior on (C*,S*) corresponds to a noninformative prior in the
sense of Jeffrey as discussed in Box and Tiao (1992)), (3) a prior
in space (C*,S*) proportional to J+3(C*,S*) in T1.7 in Table 1,
which corresponds to a uniform PDF in space (C*,h*), (4) a two-
dimensional Normal prior for (C*,S*) with arbitrary mean

(3.5,4.75) and variance matrixΣ = 4 0

0 4



 


, indicating thatC* and S*

are a priori noncorrelated with the same variance.

Sensitivity to the choice of prior onσ
Within our methodological framework, an analysis of the sensi-

tivity of the results to the choice of prior on the nuisance parameter
σ can also be easily conducted. As shown in the Appendix, we as-
sume a general structure for the prior onσ, P(σ) ∝ σ–q, whereq is
an integer. Under this assumption,Ppσ,0(θ|Data) has a closed form
depending onq (see Appendix). The prior influence on posterior
PDF for parameters (a,b), (C*,S*), and (C*,h*) can be assessed by
making q vary. We tested three different values:q = 0, 1, and 2.

Illustrative case study: Atlantic salmon stock and
recruitment on the River Oir

We applied our methodological work to aS/R data set issuing
from the wild Atlantic salmon population of the River Oir. The
River Oir is a small tributary of the River Sélune, which flows into
the Bay of Mont St. Michel (Lower Normandy, France). The stud-
ied section is 11.5 km long from the trapping facility downstream
to an impassable dam upstream. The trapping facility catches the
spawning adults and the smolt migrating out to the sea. No fishery
occurs above the trap (Prévost et al. 1996).

Because the River Oir is only a spawning tributary of the River
Sélune, there is no precise homing of adult salmon to the Oir (J.L.
Baglinière, INRA, UMR-EQHC, Aquatic Ecology Laboratory,
Rennes, France, unpublished data). Recruitment cannot be deduced
from the adult returns and we therefore estimate it from the smolt
outputs. We convert adult spawning stock and smolt recruitment
into numbers of eggs. Indeed, for the calculation of management-
related parameters, it is necessary to express both variables in the
same unit and it is the egg deposition that is ultimately limiting for
the size of the upcoming cohort (Prévost et al. 1996; Chaput et al.
1998).

A detailed description of the field data collected and the model
used to derive posterior measurement error PDFs forS/R time se-
ries is given in Rivot (1998). We only summarize it briefly here be-
cause it is not central to the present paper. For each year between
1984 and 1999, adults (in autumn) and juveniles (smolts, in spring)
were caught at the trap. Their number is estimated by capture–
mark–recapture experiments. A probabilistic model that mimics the
capture–mark–recapture experiments as binomial draws has been
developed. A sample of sizeG = 5000 is generated by MCMC

techniques from the posterior distribution of the 1984–1999 time
series of the number of spawners and the smolt outputs. From the
latter, a size-G sample from theS/R time series {S,R} = {( Si,Ri)},
i = 1,…,n (n = 13), corresponding to the egg deposition of years
1984 to 1996 and subsequent recruitment expressed in eggs, is de-
duced via deterministic transformations adult-to-egg (forS) and
smolt-to-egg (forR). These calculations use yearly biological char-
acteristics of migrating populations issued from data collected at
the trap (river- and sea-age, size, sex ratio, fecundity of females)
and are supposedly known without error. Finally, allSi and Ri are
standardized for river size by dividing number of eggs spawned
and recruited by the surface area of habitat available for juvenile
production, i.e., 25 229 m2 (Prévost et al. 1996). This sequence of
operations leads to a size-G sample generated fromP({ S,R}|Data)
that can be used in the Rao–Blakwell formula (eq. 5) with the data
being the number of fish marked and recaptured marked or un-
marked.

Technical details
To empirically assess the influence of measurement errors for

each couple of parameters (a,b), (C*,S*), and (C*,h*), we compared
the joint and marginal posterior PDFs obtained when accounting for
process errors only with those obtained when accounting for both
process and measurement errors. The first ones are computed using
eqs. A.3 and A.4 (in the Appendix), withS andR set to their most
likely values (posterior modes of the MCMC samples). Measure-
ment errors are integrated out using the Rao–Blackwell formula
(eq. 5). To focus on the influence of measurement errors only, uni-
form priors for (a,b), (C*,S*), and (C*,h*) are used so that poste-
rior PDFs best reflect information provided by the data only. The
prior for σ is taken to be noninformative (P(σ) ∝ σ–1).

We approximate the joint posterior PDFs as discrete distribu-
tions on 300 × 300 two-dimensional grids, linearly spaced for (a,b)
and log spaced for (C*,S*) and (C*,h*) in order to have a thinner
grid when approaching 0. The grid ranges are

(a,b) e [–3,+3] × [–0.2,+0.3]

(C*,S*) e [1 × 10–5,17] × [1 × 10–5,18]

(C*,h*) e [1 × 10–5,17] × [1 × 10–5,0.99999]

The probability in each point of the grid is normalized so that the
discrete stairs estimate of the integral over the grid is equal to 1.
Closed-form A.4 (Appendix) is used to compute the marginal pos-
terior PDFs fora andb. For C* (couples (C*, S*) and (C*, h*)), S*,
and h*, the marginal PDFs are computed by summation over the
corresponding joint dimension of the grid. Posterior modes are in-
terpreted as “most likely values”.x% highest posterior density
(HPD) regions (x% HPD regions) orx% intervals (x% HPD inter-
vals), i.e., regions or intervals that containx% of the probability,
are deduced from the approximated PDFs on the grid. As advised
by Walters and Ludwig (1994) and Adikson and Peterman (1996),
we checked that broadening the grid range and increasing the num-
ber of points does not affect results, especially when computing the
marginal posterior PDFs forC*, S*, and h*. All calculations were
performed using MATLAB 6.0 software (MathWorks, Inc., Natik,
Mass.).

Results

Stock and recruitment posterior PDFs
The Oir data set exhibit a high contrast inS, i.e., in eggs de-

position (Fig. 1): estimated modes of stock posterior PDFs
range from 2.7 eggs·m–2 (1991) to 22.1 eggs·m–2 (1984). R
modal values range from 1.6 eggs·m–2 (1989) to 15.6 eggs·m–2

(1984). Modal S/R points are scattered between a “high
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point” with S = 22.1 andR = 15.6 eggs·m–2 (1984) and a
“low point” with S = 2.7 andR = 2.3 eggs·m–2 (1991).

Our estimation of recruitment is more precise than that of
stock (Fig. 1). Posterior PDFs ofR are relatively homoge-
neous in dispersion, and almost all are slightly asymmetric
with a longer tail towards high values (see the shift between
the mode and the median in Fig. 1). By contrast, the disper-
sion and asymmetry ofS posterior PDFs are highly variable
between years (Fig. 1). Some distributions have small vari-
ance and are relatively symmetric (years 1985, 1996),
whereas others are more diffuse and skewed with a long tail
toward high values (years 1987, 1994).

Contrary to the common hypothesis of homogeneity in
form and variance, our results clearly show that the nature of
the measurement error PDFs varies from year to year ac-
cording to the field data available, because uncertainty ofS
and R estimations depends on the efficiency of capture–
mark–recapture experiments.

Effect of measurement errors on estimation of parameters
The integration of measurement errors as they are esti-

mated by the MCMC sample only slightly increases parame-
ter uncertainty. Posterior PDFs are rather more diffuse when
accounting for measurement errors, i.e., by integrating over
the posterior PDFs ofS andR, than those obtained with the
most likely values forS and R (Figs. 2 and 3). However,
even with process errors only, uncertainty around all param-
eters remains large. The effect of accounting for measure-
ment errors on parameter uncertainty is more pronounced
for the management-related parameters than for the natural
ones (a,b). For the latter, impact of measurement errors on
the diffusion of the joint posterior PDF is not obvious.
Ninety percent HPD regions cover approximately the same
range with measurement errors as with modalS/R values
(Fig. 2a). The marginal distribution ofa seems to be more
sensitive than that ofb (Fig. 3). The 95% posterior interval of
a is getting wider with measurement errors ([–0.29,1.44]
to [–0.71,1.29]), whereas the posterior interval ofb remains
approximately the same width ([0.022,0.15] and
[0.0071,0.13]). With regards to management-related parame-
ters, HPD regions are wider when accounting for the uncer-
tainty in S and R than with fixed modal values, especially
toward high values ofS* and C* (couple (C*, h*)) as shown
in Figs. 2b–2c. The 95% posterior intervals ofC* and S* are
all broader with measurement errors than with modal values:
[1.9,11.8] to [1.8,12.6] forS* and [0.24,7.7] to [0.17,8.7] for
C* (couple (C*, S*)). Both marginal posteriors ofS* and C*
for both couples (C*, S*) and (C*, h*) are skewed with a
long tail toward high values. By contrast, the uncertainty of
h* is not strongly affected by measurement errors (the 95%
posterior interval changes from [0.070,0.62] to [0.062,0.61]).
Note that the left-hand tail curving upward of the marginal
posterior PDFs ofh* (Fig. 3) is not an artifact. The joint
posteriorP(C*,h*|Data) increases whenh* approaches 0, for
all values ofC* (owing to the highly nonstandard form of
the likelihood in the space (C*, h*)). This leads to an accu-
mulation of mass in the neighborhood ofh* = 0.

Parallel to their slight increase in variability, posterior PDFs
obtained when taking into account measurement errors differ
in location from those obtained whenS andR are set to their
modal values. Modes fora, b, C*, and h* decrease, whereas
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Fig. 1. Box and whisker plots for the size-5000 Markov Chain
Monte Carlo (MCMC) samples from(a) P({ Si} i = 1 to n |Data) and
(b) P({ Ri} i = 1 to n |Data). Stock and recruitment are in eggs·m–2.
The boxes have lines at the first quartile, the median, and the
upper quartile. The broken lines extending from each end of the
box show the extent of the 95% posterior intervals. Symbols:m,
modes; +, 2.5% and 97.5% percentiles. (c) Modal values of the
MCMC samples for recruitment vs. stock.
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it increases forS*. The joint mode for the couple (a,b)
changes from (0.57,0.089) to (0.15,0.052) with uncertainty
on S/R data. The modes of the marginal posterior laws
(Fig. 3) significantly decrease fora (0.57 to 0.23) andb
(0.089 to 0.050). This results in a probability fora < 0 that
is approximately 8.3% withS/R modal values, whereas there
is much more chance thata < 0 when considering uncer-
tainty in S andR (P(a < 0) ≈ 0.30). With regards to manage-
ment-related parameters and particularly for (C*, S*), Fig. 2
highlights that the density is concentrated in the neighbor-
hood of the origin of the grid (small values of parameters).
Accounting for errors inS/R data results in modes of joint
distributions for (C*, S*) and (C*, h*) that drastically shift
back towards very small values. The mode of the joint pos-
terior PDF of (C*, h*) is located in (1.10,0.27) whenS andR
are set to their modes but cannot really be distinguished
from the grid origin with S/R data uncertainty
((0.075,0.060)). The same tendency is observed for the
mode of the joint posterior PDF of (C*,S*) ((1.15,3.03))
with modalS/R values vs. (0.10,1.33) with measurement er-
rors). The modes of marginal PDFs forC* and h* are differ-
ent from 0 and slightly decrease when accounting for
measurement errors (1.28 to 0.87 forC* from the couple
(C*, S*) and 0.35 to 0.30 forh*), whereas the location ofS*
tends to move up from 3.64 to 3.97 eggs·m–2 (Fig. 3).

Effect of switching from natural to management-related
parameters

In our case study, the resulting posterior PDFs are not robust
to the strong modification of priors induced when switching
from the natural parameterization (a,b) to (C*,S*) or
(C*,h*). Working with management-related parameters a
priori puts 0 probability ona < 0. Based on the marginal
posterior PDF ofa in Fig. 3, the posterior probability that
a < 0, calculated with a uniform prior on (a,b) and account-
ing for measurement errors, is about 30%.C* andh* are by
definition positive, which implies thata is also positive.
Thus, the 30% probability fora < 0 obtained with natural
(a,b) parameters is erased when switching to management-
related parameterization. However, the information “P(a <
0) ≠ 0" has not totally vanished. Indeed, HPD regions for
(C*,S*) and (C*,h*) are both concentrated close to the ori-
gin of the grid (Fig. 2). In addition, marginal posterior densi-
ties for C* and h* do not tend towards 0 whenC* and h*
approach 0 in the grid (Fig. 3). This suggests that although
we a priori excluded null value forC* and h*, the state of
naturea < 0 remains likely in light of the data. In others
words, prior information introduced by the use of manage-
ment-related parameters seems to be contradictory with the
data.

Sensitivity of posterior parameter PDFs to the prior PDFs
Posterior parameter PDFs are highly sensitive to the prior

PDFs. For instance, the marginal posterior PDFs forC* and
S* can differ markedly according to the different priors
tested, as well for location and dispersion (Fig. 4). Con-
sidering a uniform prior in the (a,b) space and a uniform
prior in the (C*,S*) space leads to drastically different re-
sults. The uniform prior on (a,b) amounts to putting a very
high weight on small values ofC* through the Jacobian
J+1(C*,S*). This is still noticeable in the posterior PDF of
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Fig. 2. Contour plots of 20% and 90% highest posterior density
regions of (a,b), (C*, S*), (C*, h*) (a, b, c, respectively) obtained
accounting either for process error only, i.e., withS and R set to
their modal values (broken line), or for both process and mea-
surement errors, i.e.,S and R are integrated out (solid line). Uni-
form priors on the three parameter couples and noninformative
prior for σ (q = 1) were used.
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(C*,S*) once the information carried by the data has been
used to update the prior. The marginal posterior PDF ofC*
looks like an inverse function and has a narrower 95% inter-
val compared with other prior PDFs tested. The marginal
posterior density ofS* is nonnull whenS* approaches zero,
its mode decreases and the width of its 95% posterior inter-
val is reduced compared with posterior PDFs obtained with
the other priors. By contrast, similar marginal PDFs are ob-
tained with a uniform prior in the space (C*,S*) or in the
space (C*,h*) and with a prior equal to a two-dimensional
normal PDF. Locations remain nearly the same. Differences
are more noticeable regarding posterior 95% credibility in-
tervals. The marginal PDFs change slightly when modifying
parameters of the two-dimensional normal prior (results not
shown here). A larger variance (taking 6 inΣ) leads to poste-
rior marginal PDFs very similar to those obtained with the
initial Σ. Decreasing the variance of the prior (replacing 4 by
2 in Σ) reduces dispersion of the posterior and makes both
C* and S* posterior modes move towards the prior mean

(3.5,4.75). By contrast, changing the mean of the normal
prior (we tried (5,6.25) and (2,2.25)) has no real influence
on posterior parameter PDFs.

For natural parameters as well as for management-related
ones, the analysis is not robust to the choice of the prior for
σ. Decreasing parameterq from 2 to 0 in the priorP(σ) ∝ σ–q

dramatically increases the dispersion of the joint parameter
posterior PDFs. Ninety percent HPD regions for joint poste-
rior PDFs (Figs. 5a–5c) and 95% posterior intervals for mar-
ginal posterior densities (results not shown) get drastically
wider with decreasingq. On the other hand, changingq has
practically no influence on the location of posterior PDFs.
This strong effect ofq on parameter uncertainty is directly
related to the fact thatq plays a similar role as the number of
observationsn in the degrees of freedomν = n – 2 + 2(q – 1)
for the multidimensional distribution A.3 (in the Appendix).
Consequently, the greater theq value, the higher the degrees
of freedom and logically the smaller the diffusion of the pos-
terior PDFs. This effect is especially marked in our case
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Fig. 3. Marginal posterior density profiles corresponding to joint posterior density of (a,b) (top), (C*, S*) (middle), and (C*, h*)
(bottom) obtained accounting for process errors only (broken line) or for both process and measurement errors (solid line). All are
obtained with uniform priors on the three parameter couples and with a noninformative prior forσ (q = 1).
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study in which 2(q – 1) is not negligible compared withn – 2
(n = 13).

Discussion

Advantages and specificity of the Rao–Blackwell
procedure

Our Rao–Blackwell procedure (eq. 5) requires random
generation of measurement errors and a closed form for the
likelihood (and also for the posterior PDF) of the parameters
of interest when the observations are assumed known with-
out errors. This restricts its range of application, especially
the second condition, but it is compensated for by several
advantages.

First, it allows the assessment of the effect of measure-
ment errors grounded on any kind of information that can be
formalized as PDFs. It uses a random sample of possible ob-
servation values that can be constructed in many different
ways, for instance using MCMC, bootstrapping, or jack-
knifing techniques. Our recommended approach is to derive
such a sample from posterior measurement error PDFs by
means of a probability model linking theS and R variables
to the field data as in our illustrative case study. By compari-
son with the error-in-variable models of Ludwig and Walters
(1981) or with the more recent state–space model of Meyer
and Millar (2000), simulating measurement errors from poste-

rior PDFs frees the modeler from making hypotheses
about the structure of measurement errors. Most often, such
hypotheses are almost impossible to justify whethertheo-
retically or by some checking against data. For instance,
Walters and Ludwig (1981) need to fix the value of the ratio
of the variances of measurement and process errors to be
able to provide estimates ofS/R-related parameters by
means of total least-squares techniques. Owing to a
Bayesian treatment of their state–space model, Meyer and
Millar (2000) relax the previous hypothesis but still assume
that the form of the measurement error distribution is the
same for all years (log-normal in their case study). More re-
alistic distributions of measurement errors can be specified
from field data. In our case study, we account for the vari-
ability from year to year in the form and dispersion of the
probability distributions forS and R observations. Had we
assumed log-normal errors with the same variance for all
years, much information coming from the field data would
have been discarded and replaced by a strong prior hypothe-
sis. The posterior PDFs of parameters conditioned by the
information brought by the capture–mark–recapture experi-
ments provide a more objective assessment of the uncertainty.

Second, our method offers computational convenience to
perform the analysis of the influence of prior easily and rigor-
ously. Closed-form distributions provide an analytical basis to
discuss prior hypotheses that underlie parameterization
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Fig. 4. Marginal posterior density profiles forC* and S* obtained with different priors on parameters. Line styles indicate
the four priors investigated: solid line, uniform on the space (C*, S*); dashed–dotted line, uniform on the space (a,b) then pro-
portional to J+1(C*, S*); dotted line, uniform on (C*, h*) then proportional toJ+2(C*, S*); dashed line, two-dimensional normal
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) on the space (C*, S*). Noninformative prior forσ (q = 1) was used and measurement errors are integrated out.
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change and the choice of prior for process error varianceσ2.
The analysis with prior distributions asP(C*,S*) ∝ J+1(C*,S*)
would also be difficult to perform via more general MCMC
sampling methods, which would hardly run with such non-
standard prior distributions.

Lastly, our method produces smooth estimates of parame-
ter posterior PDFs with modest computational effort. This
results from the fact that the posterior probability is calcu-
lated by averaging a closed form over a sample from the
posterior PDF of theS/R variables (eq. 5). Smooth estimates
are not only esthetic. In our case study, marginal posterior
densities forC* or h* do not tend towards 0 whenC* or h*
approach 0. The Rao–Blackwell procedure provides precise
estimators for the densities over these limit domains that are
critical for management considerations.

Owing to the above advantages, we advocate that Rao–
Blackwell procedures similar to ours should be preferred to
full treatment of the model by MCMC techniques whenever
possible. Full treatment by MCMC sampling would be used
to estimateP(θ|Data) when no closed form for the likeli-
hood is available.

Effect of measurement errors on parameter uncertainty
In our case study, the effect of measurement errors on pa-

rameter uncertainty remains moderate. This interestingly
contrasts with the potentially disruptive effect of measure-
ment errors inS/R analysis reported by Walters and Ludwig
(1981) or Hilborn and Walters (1992). Still, ignoring mea-
surement errors inS and R observations leads to overesti-
mating the information available concerning the recruitment
process. Including measurement errors blurs the information
coming fromS/R data, resulting in a looser fit ofS/R curve
and a less precise assessment of parameters.

Our results, demonstrating that measurement errors are
not always a major concern for the estimation ofS/R- related
parameters, should be interpreted and generalized with cau-
tion because they may be due to specific features of our case
study. Indeed, our data set is characterized by a high contrast
in S values. This is favorable to the robustness of parameter
estimates to measurement errors. By contrast with common
situations whereS/R observations are clustered in a small
portion of the potential range forS (Hilborn and Walters
1992; Adikson and Peterman 1996), in our study the small-
estS value is less than a tenth of the largest. Our estimation
of recruitment is also relatively accurate and less affected by
measurement errors than that of stock. Measurement errors
for R comparable with those ofS would certainly lead to
more uncertain parameter estimates. However, we may have
overestimated the precision of ourR estimates in terms of
eggs because we ignore the uncertainty related to the transi-
tion between the smolt stage and the subsequent eggs depo-
sition. Indeed, we used a fixed average ratio of eggs
produced per smolt for the conversion of the number of
smolts into eggs.

Stock status considerations
Ignoring measurement errors gives an overly optimistic

view of the stock productive potential and underestimates
the risk associated with misspecification of biological refer-
ence points. Accounting for measurement errors leads to
smaller values for estimated parametersa and b than those
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Fig. 5. Contour plots of 90% highest posterior density regions of
(a,b), (C*, S*), and (C*, h*) (a, b, and c, respectively) obtained
with different priors for the standard deviation of the process er-
rors σ. The generic form of the prior is proportional toσ−q . Line
style defines different values forq as follows: dotted line,q = 0;
solid line, q = 1; dashed line,q = 2. Posterior distributions are
performed integrating out measurement errors. Uniform distribu-
tions are used for the three parameter couples.
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obtained withS andR set to their modal values. This in turn
yields a best-fit Ricker curve that ascends less rapidly at low
stock values (smallera) and shows less evidence of declin-
ing recruitment at large stock size (smallerb, i.e., lower
density-dependence effect). For the management-related pa-
rameters, ignoring observation uncertainty by settingS and
R to their most likely values leads to an overestimation of
C* and h* (related to stock productivity) while underesti-
matingS*. Not only the best estimates of parameters are af-
fected, but also the probability thatC* or h* is under and
that S* is above a certain threshold increases. As a conse-
quence, in a management-advice perspective, theS/R analysis
without measurement error could promote overexploitation.

These assessments of the measurement error bias remain
empirical. Indeed, because we do not know what the true
values of the parameters are, we cannot prove that account-
ing for measurement errors results in more accurate parame-
ter estimation. The results above cannot be generalized
because they depend on the measurement errors that we esti-
mated in our particular case study. However, they are consis-
tent with more theoretical studies dealing with the effect of
measurement errors on the estimation ofS/R-related parame-
ters (Walters and Ludwig 1981; Hilborn and Walters 1992).

Sensitivity of posterior PDFs to prior inputs
The present work reveals that specification of priors re-

mains of primary importance. In agreement with Adikson
and Peterman (1996), we contend that any Bayesian ap-
proach to determineS/R-related parameters should examine
in detail the prior implementation process. Prior inputs in the
analysis, as parameterization (e.g., natural vs. management
related) or prior PDFs of the parameters of direct interest or
treated as nuisance can have a major influence on the results
when facing little informative data such asS/R series (few
data points highly scattered by measurement and process
stochastic errors).

Choice of parameters
We warn against systematically ignoring natural parameters

(a,b), especially in cases where the stock productivity is low
as in the Oir salmon population. Management-related para-
meterizations do not allow us to check for the long-term
sustainability of populations. Schnute and Kronlund (1996)
advocated that management-related parameters should have
priority over natural ones (a,b) because they have direct rele-
vance to management. We agree in the sense that these pa-
rameters provide more direct links between population
dynamic and regulation of the exploitation. For instance, for
the Atlantic salmon populations of Brittany,S* is used as a
spawning target andC* is used to set total allowable catch
(TACs) on a river-by-river basis. However, switching from pa-
rameters (a,b) to (C*,S*) or (C*,h*) dramatically changes the
model specification. It amounts to the strong prior assumption
that the population is able to at least replace itself in the ab-
sence of exploitation, i.e.,P(a < 0) is null. In our case study,
this assumption is contradictory with the posterior
information provided by the analysis with (a,b) using a
noninformative uniform prior which states thata < 0 anda >
0 are almost equally likely events. Then, it would be highly
probable that the Oir salmon population is not able to replace

itself. This important diagnosis, consistent with the pressure
exerted by human activities on the Oir environment (Prévost
et al. 1996), is a priori discarded when using management-
related parameters. As a cautionary approach, we strongly
recommend first performing the analysis with natural parame-
ters (a,b) before eventually switching to management-related
parameterization, especially for low productivity stocks sus-
pected to be depleted.

Choice of priors
In some instances where little is known a priori on param-

eters values, the Bayesian approach offers the opportunity to
define noninformative priors. This choice is appropriate
when attempts to define a meaningful informative prior may
appear as a desperate quest, as for the standard deviation of
the process errors,σ. Our results highlight that although
often overlooked, the choice of a prior for this nuisance pa-
rameter may be of great significance even if it vanishes from
the final interpretation after integrating over it. This should
be an incentive to elicit a meaningful prior PDF forσ, but
probably too little is still known about the process generat-
ing the recruitment variability to do so. The process error
has in itself a formal nature with no real experimental
grounds to assess relative degrees of belief of different val-
ues before proceeding to theS/R analysis. The modeler has
little opportunity to propose a realistic variance structure and
we recommend a conservative choice ofq = 0 or q = 1 for a
less informative prior of the formσ−q (preserving the analyt-
ical simplification ensuing from this form).

To summarize, should a noninformative prior be the de-
fault choice in any case? The answer is a qualified no. A
noninformative prior can become hard to interpret when
translated into another parameterization. When proceeding
to parameter transformation, careful consideration must be
given to the implications in terms of priors. Our approach
forces a decision regarding which of the parameter pairs,
natural ones (a,b) or management-related ones, should be of
primary concern. For Box and Tiao (1992), a noninformative
prior should be used as a reference to judge what kind of un-
prejudiced inference can be drawn from the data. In our case
study, a uniform PDF on (a,b) seems to correspond to this
definition. It is not only noninformative in the sense of
Jeffrey (Box and Tiao 1992), but it also seems to bring little
information into the analysis. When changing parameters
(a,b) into (C*,S*), the prior could be adjusted by transform-
ing the uniform prior on (a,b) into a prior on (C*,S*) pro-
portional to J+1(C*,S*). We argue that this prior is not
noninformative in the space (C*,S*) in the sense that the in-
formation that it carries, i.e., a huge weight on very smallC*
and S* values (see the high degree ofS* and C* in the de-
nominator of J+1(C*,S*)), overcomes information brought
by the data. What brings about little information in the space
(a,b) becomes informative in the space (C*,S*). Hence, we
join Box and Tiao (1992) in contending that each
parameterization must be considered for its own merits and
the form of noninformative prior input depends on the
parameterization considered. In other words, as proposed by
Schnute and Kronlund (1996) for (C*,h*), it is relevant to
seek another form of noninformative prior regarding
(C*,S*), without reference to (a,b).
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Towards informative prior elicitation
We agree with Hilborn and Liermann (1998) that one of

the most challenging issues in the Bayesian approach to
stock and fisheries assessment is the elicitation of informa-
tive priors summarizing our previous knowledge. Indeed, the
Oir S/R data set, as in many ecological studies, does not pro-
vide enough information to supersede the influence of the
prior: posterior parameter PDFs are largely sensitive to the
choice of the prior. Consequently, we believe that this forces
the analyst to devote much care on prior elicitation so as to
introduce relevant prior knowledge. We must look at what is
known about the biological process of interest before its spe-
cific study. This is of special importance forS/R analysis in
salmonids where the data are most often not very informa-
tive, even though salmonids are among the most-studied fish
species of the last century. This extensive biological and
ecological knowledge cannot be ignored when defining pri-
ors. Myers (1997) and Hilborn and Liermann (1998) empha-
sized the potential of Bayesian meta-analysis to derive
meaningful priors. Whatever the method used, prior elicita-
tion might be facilitated by expressing models relative to pa-
rameters of ecological significance, which can be directly
connected with available knowledge. For instance, theb pa-
rameter in the Ricker function has no concrete meaning for
an ecologist. However, it is closely related to maximum re-
cruitment, directly connected with the concept of carrying
capacity of rivers, which has been most studied for juvenile
salmonids.

The Bayesian approach potentially allows the incorpora-
tion of prior knowledge. We should take full advantage of
this possibility and devote more effort to prior elicitation.
When not doing so, we are sometimes left with debatable
posterior inferences that are significantly influenced by prior
assumption and possibly meaningless regarding the ecologi-
cal process of interest. Still, whatever the interest in using
informative priors, it should always be accompanied by a
careful analysis of the influence of the prior on the posterior.
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Appendix

A closed form for Ppσ,0(θ|{S,R}): treating the Ricker model as linear
Considering {S,R} as observable known without error, we assessPpσ,0(θ|{ S,R}) by using classical results of linear models.

The linear form is obtained by rearranging the logarithm of the Ricker relation (eq. 1). Equation A.1 defines a linear model

A.2 with a two-dimensional mean parameterθ =
a
b









. We rigorously need the strong assumption that the ln(Ri /Si) are inde-

pendently distributed with a constant variance. Although this hypothesis is neither supported by theoretical consideration nor
verified experimentally because process and measurement errors occur simultaneously, it is commonly used (see Quinn and
Deriso (1999) for a discussion). Note that here, we made the hypothesis that {S,R} are measured without error, i.e., only re-
cruitment process errors are considered. Under this hypothesis, the least-square procedure provides unbiased estimators$θ
(Quinn and Deriso 1999). Box and Tiao (1992) provide the analytical expression of the posterior ofθ integrated overσ assum-
ing a joint prior for (θ,σ), P(θ,σ) ∝ σ–1. We performed calculation withP(θ,σ) ∝ σ–q, whereq is an integer. This corresponds to
independent priors forθ and σ, with P(θ) uniform on ]–∞;+∞[ × ]–∞;+∞[, that is noninformative for the mean of a linear
model and withP(σ) ∝ σ–q. q = 1 corresponds to a noninformative prior onσ. Under those assumptions the closed form for
posterior PDFPpσ,0(θ|{S,R}) is given by eq. A.3. Marginal PDFs fora and b have closed-form expressions (eq. A.4).

Linear model

(A.1) Yi = ln(Ri /Si) Y Yi = a – bSi + wi for i = 1 to n
(A.2) Y
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Notations
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and s2 are the maximum likelihood

estimates ofθ and σ2, respectively.T = (X′X)/s2 is the approximate precision
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–1·T21).

Posterior PDFs
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Table A1. Treatment of the Ricker model as linear.
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(A.4)
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(Marginal of b is obtained by permutation of indices 1 to 2)

Γ is the Gamma functionΓ( )x y yx y= ⋅ ⋅−
∞

−∫ 1

0

e d

Note: Equations A.3 and A.4 are closed-form expressions of joint posterior and marginal PDFs, under prior
assumptions of a uniform prior on (a,b) and P(σ) ∝ σ–q (see Box and Tiao (1992) for more details). Note that
when q = 1, Ppσ,0(θ|{S,R}) is a multivariatet distribution with ν = n – 2 degrees of freedom, location vector$θ,
and precision matrixT. Marginal posterior PDFs ofa and b are both Student’s distributions withν = n –2
degrees of freedom, location vectors$θ1 and $θ2, and precisionT1 and T2, respectively.

Table A1 (concluded).
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