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AC for Networks Simulations

Data Analysis Discussion

Gene Expression

e Genes: Functional regions of DNA that encode proteins and RNA
molecules

e Expression levels of thousands of genes can be measured using

“high-throughput” technologies (e.g., microarrays, serial analysis of
gene expression, next-generation sequencing)
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Gene Regulatory Networks

e Gene regulatory networks: set of genes that interact indirectly with
one another through proteins called transcription factors (TF)

e Abundance of TF is difficult to measure = expression levels of
corresponding genes usually used as proxy
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Reverse Engineering Gene Regulatory Networks

e Expression levels of thousands of genes
can be measured using “high-throughput”
technologies (few replicates or time
points)

Adjacency matrix Parameter matrix
¢ Objective: Use time-course gene ABCD ABCoD
. . . . All 1.0 0 Al 2 0 0
expression data to elucidate information G Bloooo o B0 0 00
. . CcC|o 001 T Ccjo 0 0 -2
about patterns of relationships of gene plot oo plo 100

expression (@,,@ @,‘@
©.® @
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Bayesian Network Framework

Bayesian Network (BN):

e Graphical model to represent conditional probabilistic relationships
among random variables

e Graphical structure, G = (V/, E) defined by a set of vertices V and
edges E and a family of conditional distributions F

Dynamic Bayesian Network (DBN):
e BN limitations: no feedback loops, discrete data, equivalence classes
e Unfold BN over time
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|dentifiability of gene regulatory (sub-)networks?

e Often, similar inference approaches yield very different network
structures on a common dataset

e In addition, complicated network motifs may be difficult or impossible
to infer from the available data

e Question: Is it possible to determine whether parts of a given
network are identifiable, given the available data?
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Outline for the rest of the talk

e Approximate Bayesian Computation

e Background and motivation
e Monte Carlo approaches

e ABC-MCMC for Networks

e Simulation studies
e Real data analysis: SOS DNA repair system in E. coli

e Discussion

Discussion

(e]e]

7/36



ABC-MCMC for Networks
9000000000000 0

Some notation

Let observed time-course gene expression databe Y ={y;:t=1,..., T},
where y; = (Y1, ..., ytp )’ for P genes at T equally spaced time points.

Two related characterizations of a gene regulatory network:
e Adjacency matrix G (Gjx = 1 if gene k regulates gene j, 0 otherwise)

e Parameter matrix © (6jx represents the relationship between gene k
at time t — 1 and gene j at time t)

- -
Adjacency matrix Parameter matrix
ABCD A B C D
Al 1.0 0 All 2 0 0
B|0O 0O 0O B|0O 0O 0 0
G=cloo o O=clo 0 0 2
D01 00 D0 -1 0 0

Cre Gre
@ @
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Bayesian Framework

High dimensional problem: many possible gene-to-gene interactions
(O(P?)), usually few time points (T < 10)

Number of possible network structures increases exponentially as the
number of genes increases, and many network structures may yield
similarly high likelihoods

Examining the shape of posterior distributions may give additional
information about the structure and inferability of specific
gene-to-gene interactions

A priori biological information may be encoded into the prior
distributions
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Likelihood specification

e For a given matrix of gene regulatory network parameters ©:
Y ~ H f(Yt; Yi-1, @)
t

where yg = 0.

e Simple, linear models (e.g., the first-order vector autoregressive
(VAR(1)) model) have been found to be good approximations in
some cases to the dynamics of time-course expression data:

F(ye:ye-1,0) = Oye1 + e
where E(e;) =0, E(e;e}) = X (a positive definite covariance matrix),

and E(e.€e}) = 0.
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Network prior distributions (G and ©)

o Gene regulatory networks typically sparse with spoke-and-hub
structure and few regulators per gene (fan-in)

9 ® ®\
o)
® @
Spoke- Gene A
and-hub fan-in=3

Prior distributions:
e m(G) is uniform over all structures, with maximum fan-in of 5 or less
o m(0|Gj = 1) ~ U(=2,2)
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Approximate Bayesan Computation (ABC)

¢ Objective: infer network from observed expression data Y via the
posterior
(0, G|Y) x f(Y|O)n(O|G)n(G)

e Without restrictive distributional assumptions on model parameters
(et), likelihood may be difficult to calculate

e Approximate Bayesian Computation: Sampling-based Bayesian
approach to infer approximate posterior distribution
m(©]p(Y*,Y) <€) using simulated data Y*, a distance function p,
and tolerance ¢
e Approximate when € > 0 and equivalent to simulating from the prior
when € — oo

12 /36



ABC-MCMC for Networks
00000e00000000

ABC rejection method

1. Generate G and © from 7(G) and 7(©|G), respectively

2. Generate one-step-ahead predictors y; from the VAR(1)
model, given y; 1 and ©*.

3. Calculate the distance p(Y™*, Y) between Y and Y™*.
4. Accept (©*,G*) if p<e.

Very inefficient = Only 5 proposed networks (©*, G*) are accepted out
of a total of 1 x 10" proposals!
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ABC rejection method

1. Generate G and © from 7(G) and 7(©|G), respectively
= Sequential methods, Markov chain Monte Carlo

2. Generate one-step-ahead predictors y; from the VAR(1)
model, given y; 1 and ©*.

3. Calculate the distance p(Y™*, Y) between Y and Y™*.
= Distance criterion, summary statistics
4. Accept (©*,G*) if p<e.

= Post-sampling regression, nonparametric estimation

Very inefficient = Only 5 proposed networks (©*, G*) are accepted out
of a total of 1 x 10" proposals!
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ABC-MCMC (Marjoram et al., 2003)

e ABC-Markov chain Monte Carlo (MCMC): Construct a Markov chain
(e.g., using Metropolis-Hastings algorithm) with approximate
posterior distribution m(©|p(Y™, Y) < €) as equilibrium distribution

e Given previous {©', G'}, a proposal {©*, G*} is accepted at iteration
(7 + 1) with probability

[, (6", G")q(8', G|, G*)
« m|n{ ) W(@',G')q(@*,G*|@’,G’) (P( ) ) < e)

where g(+|-) is the proposal distribution and 7(©, G) = 7(©|G)7(G)
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Adapting ABC-MCMC to Networks: ABC-Net

Adaptations must be made to the ABC-MCMC method of Marjoram et al.
(2003) for the context of gene regulatory networks:

1. Computationally efficient way to simulate expression data Y* from a
known regulatory network {©*, G*}

2. Appropriate distance function p and tolerance ¢ to compare simulated
(Y*) and observed (Y') data

3. Proposal distributions for network structure and parameters
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1. Simulating Y™ for Network {©*, G*}

Generally, we simulate gene expression at time t as a function of the gene
expression at the previous time point:

y; = fe(yt-1,0%)

In practice, for continuous data (e.g., microarrays):
e Set y] =yi1.
o Generate one-step-ahead predictors based on VAR(1) model on gene
expression for t =2,..., T:

Y: = 0%y 1

e Note: this is a deterministic simulation procedure...
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2. Distance Function and Tolerance

Distance functions (p):
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2. Distance Function and Tolerance

Tolerance (e):

e “Cooling” procedure: decreasing sequence of thresholds, until
minimum pre-set threshold € is reached

e ¢ = 1% quantile of distances p(Y™*, Y) estimated from 5000 random
networks
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3. Network Proposals

e With networks, we must propose both a new structure and a new set
of parameters

o Recall that we use two representations of a given network: the
adjacency matrix G and the parameter matrix ©

ABCD A B C D
AL 100 Al 2 0 0
B[00 00 B0 0 0 0
G=cloo o1 9=¢lo o 0 =
Dlo1 00 D0 -1 0 0

e Joint distribution of G and © may be seen as a completion to the
marginal density of ©

19 /36



Introduction ABC-MCMC for Networks Simulations Data Analysis Discussion
00000 000000000000 e0 0000000 0000 [e]e)

Two-Step Proposal Distribution
e Two-step proposal distribution: q(G*|G’) and q(©*|©', G*):

Two-step proposal distribution

Adjacency matrix Parameter matrix
ABC o AR
A0 0 0 o i 00 0
G=8lo o0 1 O=8B|0 0 -2
cl1 0 0 o e o e Ci3 oo
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Two-Step Proposal Distribution
e Two-step proposal distribution: q(G*|G’) and q(©*|©', G*):

Two-step proposal distribution

Adjacency matrix Parameter matrix
A B C
ABC
A(O0O 0 O o o A0 0 O
G=8lo o1 @'=B|0 0 2
ool @—© @—© <o
Add, delete, reverse edge
(Husmeier, 2003)
ABC
. A0 0 O o
ool @
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Two-Step Proposal Distribution
e Two-step proposal distribution: q(G*|G’) and q(©*|©', G*):

Two-step proposal distribution

Adjacency matrix Parameter matrix
ABC o A A B C
A0 0 0 o _ 00 0
G=8lo o1 @'=B|0 0 2
cli oo e e o e c3 o0
Add, delete, reverse edge K
ABC A B C
. A(0O 0 O o |:> o A0 0 O
G =B|1 0 1 ‘ © =B|-04 0 03
clioo o e o e cl27 0 o
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ABC-MCMC Network Method

ABC-Net Algorithm:

0. |Initialize ©', G', i = 0.
1. (a) Propose G* according to q(G|G').
(b) Propose ©* according to q(©|©', G*).
2. Simulate Y* from f(-|©*, G*).
3. Set {G'*!, @1} = {G*, ©*} with probability

_ m(G*)m(©*|G*)q(G'|G*)q(97|6%) *
o = mm{l, 7(Gr(O7G )qCZG*\G )q?@w@) 1 [p(y >y) < E]}

and {G'T1,0*1} = {G' @'} with probability 1 — a.
4. Seti=i+1. If i <N (a pre-set number of iterations), return to 1.

e QOutput: dependent samples from the stationary distribution of the
chain, f(©,Glp(Y*,Y) <e)
e Burn-in period, number of iterations, chain thinning, ...
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Simulations: Raf Signalling Protein Pathway

e Simulations based on currently accepted gold-standard Raf signalling
pathway (Sachs et al., 2005) in human immune system cells for 11
genes (20 total edges)

e Simulate T = 20 time points, R = 1 replicate using VAR model
e Run ABC-Net algorithm for 10 independent chains of length 1 x 10°
with thinning interval of 50

e Use Gelman-Rubin statistic to assess convergence across chains
22 /36
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ABC-Net Simulations

. Choice of distance function p and tolerance ¢

. Suitability of VAR simulator for data generated with alternative
models (nonlinear models, second-order models, and ordinary
differential equations)

. Qualitative assessment of edge “flexibility”
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AUC

Area Under the Curve (By Distance Function and Threshold)

for Networks

Simulations
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Data Analysis

Simulations |: Choice of p and ¢

e Set € to be the 1%, 5%, or 10% quantile of distances p from 5000
random networks
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Simulations Il: Suitability of VAR Simulator

e Alternative models: first-order nonlinear VAR (VAR-NL(1)),
second-order VAR (VAR(2)), second-order nonlinear VAR
(VAR-NL(2)), and ordinary differential equation (ODE)

Area Under the Curve (By Model)

AUC
| |

040 045 050 055 060 065 070 0.75

VAR(1) VAR-NL()  VAR@Z)  VAR-NL(2) ODE

Model Type
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Simulations IlI: Flexibility of edges

26 / 36



Simulations
0000e00

Simulations IlI: Flexibility of edges

—

=



ABC-MCMC for Networks Simulations Data Analysis
00000000000000 0000800 0000

Simulations IlI: Flexibility of edges

26 / 36



Simulations
0000e00

Simulations IlI: Flexibility of edges

g@
— )
T~

26 / 36



ABC-MCMC for Networks Simulations Data Analysis
00000000000000 0000800 0000

Simulations IlI: Flexibility of edges
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Approximate Posterior Distributions
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Simulations: Discussion

e Canberra, Euclidean, and Manhattan distances perform similarly in
terms of AUC; MVT distance does not perform as well
e Performance of ABC-Net deteriorates for alternative models when a
VAR simulator is used
e Alternative simulators may be used in situations where other models
are known to be more appropriate
e “Flexible” and “rigid” edges yield additional information about the
dynamics of the network
e Rigidity and flexibility are closely linked to the network dynamics,
robustness, and sensitivity
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Data Analysis

e Lots of network inference algorithms exist; what additional
information can ABC-Net provide?
e Similar methods may yield very different results — why?
e False positives, complicated network structures, small number of time
points, ...

o Real data analysis: S.0.S. DNA repair system in Escherichia coli
e Empirical Bayes Dynamic Bayesian Network (EBDBN) method (Rau et
al. (2010)): empirical Bayesian estimation of parameters in a linear

state-space model
e ABC-Net
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Data Analysis: S.0.S. DNA Repair System in E. coli

S.0.S. DNA repair system of Escherichia coli (Ronen et al., 2002)
8 genes, with lexA as a master regulator that inhibits S.0.S. genes
under normal conditions but activates them when DNA damage is
sensed by recA (“single-input” module architecture)

50 time points, 1 replicate

Maximum fan-in for ABC-Net method constrained to 2
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Results: S.0.S. DNA Repair System

EBDBN Results:

— True Positive recA
= False Positive
False Negative
lexA

8 9 9 5 88

Discussion

(e]e]
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Results: S.0.S. DNA Repair System

EBDBN Results:
— True Positive

= False Positive

recA
False Negative
ABC-Net Results: A
Approx. Posterior

Distributions

Discussion
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Discussion: S.0.S. DNA Repair System

Recall my original question: Is it possible to determine whether parts
of a given network are identifiable, given the available data?

e “Rigid" and “flexible” edges identified by the ABC-Net algorithm are
a first step to understanding what can be inferred from the given data

e S5.0.S. DNA repair is a simple, yet sophisticated network = network
is reacting to conditions within the cell

e In S.0.S. system, lexA decreases very rapidly, so S.0.S. genes turn on
at about the same time

e Time-delay models (e.g., autoregressive models) show stronger link
between recA and S.0.S. genes
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Summary

Inferring gene regulatory networks is intrinsically difficult: complex
network topology, small number of replicates and time points, noise in
expression measurements

Approximate Bayesian Computation methods can reveal information
about the dynamics of biological systems from time-series gene
expression data

ABC-MCMC Network (ABC-Net) approach uses a simulation-based
Bayesian method with few distributional assumptions to infer
approximate posterior distributions in small networks

Results seem to suggest that given the available data, some
gene-to-gene interactions are easier to infer than others...
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Future Work

o Further examine components of ABC-Net method:

e More sophisticated data simulators and techniques to identify optimal
simulators for real data

e Alternative and efficient network structure proposal schemes

e Objective criterion to characterize approximate posterior distributions
(e.g., introduce hierarchical prior on latent indicator variable G in
ABC-Net method, and use local Bayes factor to quantitatively examine
evidence of network edges)

o Examine alternative simulators and distance functions for count-based
measures of gene expression (e.g., RNA sequencing data)
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LFN Implementation Details

e Burn-in period
e Cooling procedure: Temper acceptance with exponential cooling
scheme, starting at some initial temperature ¢g and cooling to
€i+1 = A€ until the minimal temperature €, = € is reached. We use
A =0.90 and set g = eA™10.
e Use each ¢; for 200 iterations, then cool to next value.
e If €min is reached and the acceptance rate for the chain < 1%, the
burn-in period is reinitialized.
e Chain length:

e 10 chains for 1 x 10° iterations each (1 x 107 iterations total)

e Thinning interval of 50 (2 x 10° remaining iterations)

e Inference made on samples corresponding to smallest 1% of p(y*,y)
(2000 iterations)
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