ABC-MCMC for Network

Simulations

Data Analysis 0000 Discussion 00

College of Science - Department of Statistics Statistical Bioinformatics Center

Exploring the identifiability of gene regulatory networks with approximate Bayesian computation AppliBUGS meeting AgroParisTech

Andrea Rau

December 9, 2011

ABC-MCMC for Network

Simulations

Data Analysis 0000 Discussion 00

Gene Expression

- Genes: Functional regions of DNA that encode proteins and RNA molecules
- Expression levels of thousands of genes can be measured using "high-throughput" technologies (e.g., microarrays, serial analysis of gene expression, next-generation sequencing)

ABC-MCMC for Network

Simulations

Data Analysis 0000 Discussion 00

- Gene regulatory networks: set of genes that interact indirectly with one another through proteins called transcription factors (TF)
- Abundance of TF is difficult to measure \Rightarrow expression levels of corresponding genes usually used as proxy

ABC-MCMC for Network

Simulations

Data Analysis 0000 Discussion 00

- Gene regulatory networks: set of genes that interact indirectly with one another through proteins called transcription factors (TF)
- Abundance of TF is difficult to measure \Rightarrow expression levels of corresponding genes usually used as proxy

ABC-MCMC for Network

Simulations

Data Analysis 0000 Discussion 00

- Gene regulatory networks: set of genes that interact indirectly with one another through proteins called transcription factors (TF)
- Abundance of TF is difficult to measure \Rightarrow expression levels of corresponding genes usually used as proxy

ABC-MCMC for Network

Simulations

Data Analysis 0000 Discussion 00

- Gene regulatory networks: set of genes that interact indirectly with one another through proteins called transcription factors (TF)
- Abundance of TF is difficult to measure \Rightarrow expression levels of corresponding genes usually used as proxy

ABC-MCMC for Network

Simulations

Data Analysis 0000 Discussion 00

- Gene regulatory networks: set of genes that interact indirectly with one another through proteins called transcription factors (TF)
- Abundance of TF is difficult to measure \Rightarrow expression levels of corresponding genes usually used as proxy

ABC-MCMC for Network: 00000000000000 Simulations

Data Analysis 0000 Discussion 00

Reverse Engineering Gene Regulatory Networks

- Expression levels of thousands of genes can be measured using "high-throughput" technologies (few replicates or time points)
- **Objective**: Use time-course gene expression data to elucidate information about *patterns* of relationships of gene expression

ABC-MCMC for Network

Simulations

Data Analysis 0000 Discussion 00

Bayesian Network Framework

Bayesian Network (BN):

- Graphical model to represent *conditional* probabilistic relationships among random variables
- Graphical structure, $\mathcal{G} = (V, E)$ defined by a set of vertices V and edges E and a family of conditional distributions \mathcal{F}

Dynamic Bayesian Network (DBN):

- BN limitations: no feedback loops, discrete data, equivalence classes
- Unfold BN over time

Identifiability of gene regulatory (sub-)networks?

- Often, similar inference approaches yield very different network structures on a common dataset
- In addition, complicated network motifs may be difficult or impossible to infer from the available data

• **Question**: Is it possible to determine whether parts of a given network are identifiable, given the available data?

ABC-MCMC for Networks

Simulations

Data Analysis 0000 Discussion 00

Outline for the rest of the talk

- Approximate Bayesian Computation
 - Background and motivation
 - Monte Carlo approaches
- ABC-MCMC for Networks
 - Simulation studies
 - Real data analysis: SOS DNA repair system in E. coli
- Discussion

ABC-MCMC for Networks

Simulations

Data Analysis 0000 Discussion 00

Some notation

Let observed time-course gene expression data be $Y = \{\mathbf{y}_t : t = 1, ..., T\}$, where $\mathbf{y}_t = (y_{t1}, ..., y_{tP})'$ for P genes at T equally spaced time points.

Two related characterizations of a gene regulatory network:

- Adjacency matrix G ($G_{jk} = 1$ if gene k regulates gene j, 0 otherwise)
- Parameter matrix Θ (θ_{jk} represents the relationship between gene k at time t 1 and gene j at time t)

ABC-MCMC for Networks

Simulations

Data Analysis 0000 Discussion 00

Bayesian Framework

- High dimensional problem: many possible gene-to-gene interactions $(\mathcal{O}(P^2))$, usually few time points (T < 10)
- Number of possible network structures increases exponentially as the number of genes increases, and many network structures may yield similarly high likelihoods
- Examining the shape of posterior distributions may give additional information about the structure and inferability of specific gene-to-gene interactions
- A priori biological information may be encoded into the prior distributions

ABC-MCMC for Networks

Simulations

Data Analysis 0000 Discussion 00

Likelihood specification

• For a given matrix of gene regulatory network parameters $\Theta\colon$

$$Y \sim \prod_t f(\mathbf{y}_t; \mathbf{y}_{t-1}, \Theta)$$

where $\mathbf{y}_0 = 0$.

• Simple, linear models (e.g., the first-order vector autoregressive (VAR(1)) model) have been found to be good approximations in some cases to the dynamics of time-course expression data:

$$f(\mathbf{y}_t; \mathbf{y}_{t-1}, \Theta) = \Theta \mathbf{y}_{t-1} + \mathbf{e}_t$$

where $E(\mathbf{e}_t) = 0$, $E(\mathbf{e}_t \mathbf{e}'_t) = \Sigma$ (a positive definite covariance matrix), and $E(\mathbf{e}_t \mathbf{e}'_{t'}) = 0$.

ABC-MCMC for Networks

Simulations

Data Analysis 0000 Discussion 00

Network prior distributions (G and Θ)

• Gene regulatory networks typically sparse with spoke-and-hub structure and few regulators per gene (fan-in)

Prior distributions:

• $\pi(G)$ is uniform over all structures, with maximum fan-in of 5 or less

•
$$\pi(heta_{jk}|G_{jk}=1)\sim\mathcal{U}(-2,2)$$

Approximate Bayesan Computation (ABC)

• **Objective**: infer network from observed expression data *Y* via the posterior

 $\pi(\Theta, G|Y) \propto f(Y|\Theta)\pi(\Theta|G)\pi(G)$

- Without restrictive distributional assumptions on model parameters (\mathbf{e}_t) , likelihood may be difficult to calculate
- Approximate Bayesian Computation: Sampling-based Bayesian approach to infer approximate posterior distribution $\pi(\Theta|\rho(Y^{\star}, Y) \leq \epsilon)$ using simulated data Y^{\star} , a distance function ρ , and tolerance ϵ
 - Approximate when $\epsilon>0$ and equivalent to simulating from the prior when $\epsilon\to\infty$

ABC-MCMC for Networks

ABC rejection method

- 1. Generate G and Θ from $\pi(G)$ and $\pi(\Theta|G)$, respectively
- 2. Generate one-step-ahead predictors \mathbf{y}_t^* from the VAR(1) model, given \mathbf{y}_{t-1} and Θ^* .
- 3. Calculate the distance $\rho(Y^*, Y)$ between Y and Y^* .
- 4. Accept (Θ^*, G^*) if $\rho \leq \epsilon$.

Very inefficient \Rightarrow Only 5 proposed networks (Θ^* , G^*) are accepted out of a total of 1×10^7 proposals!

ABC-MCMC for Networks

Simulations

Data Analysis 0000 Discussion 00

ABC rejection method

- 1. Generate G and Θ from $\pi(G)$ and $\pi(\Theta|G)$, respectively \Rightarrow Sequential methods, Markov chain Monte Carlo
- 2. Generate one-step-ahead predictors \mathbf{y}_t^* from the VAR(1) model, given \mathbf{y}_{t-1} and Θ^* .
- 3. Calculate the distance $\rho(Y^*, Y)$ between Y and Y^{*}. \Rightarrow **Distance criterion**, summary statistics
- 4. Accept ($\Theta^{\star}, G^{\star}$) if $\rho \leq \epsilon$.

 \Rightarrow Post-sampling regression, nonparametric estimation

Very inefficient \Rightarrow Only 5 proposed networks (Θ^* , G^*) are accepted out of a total of 1×10^7 proposals!

ABC-MCMC for Networks

Simulations

Data Analysis 0000 Discussion 00

ABC-MCMC (Marjoram et al., 2003)

- ABC-Markov chain Monte Carlo (MCMC): Construct a Markov chain (e.g., using Metropolis-Hastings algorithm) with approximate posterior distribution π(Θ|ρ(Y^{*}, Y) ≤ ε) as equilibrium distribution
- Given previous $\{\Theta^i, G^i\}$, a proposal $\{\Theta^\star, G^\star\}$ is accepted at iteration (i+1) with probability

$$\alpha = \min\left\{1, \frac{\pi(\Theta^{\star}, G^{\star})q(\Theta^{i}, G^{i}|\Theta^{\star}, G^{\star})}{\pi(\Theta^{i}, G^{i})q(\Theta^{\star}, G^{\star}|\Theta^{i}, G^{i})}\mathbf{1}(\rho(Y^{\star}, Y) < \epsilon)\right\}$$

where $q(\cdot|\cdot)$ is the proposal distribution and $\pi(\Theta, G) = \pi(\Theta|G)\pi(G)$

Simulations

Adapting ABC-MCMC to Networks: ABC-Net

Adaptations must be made to the ABC-MCMC method of Marjoram et al. (2003) for the context of gene regulatory networks:

- 1. Computationally efficient way to simulate expression data Y^* from a known regulatory network $\{\Theta^*, G^*\}$
- 2. Appropriate distance function ρ and tolerance ϵ to compare simulated (Y^*) and observed (Y) data
- 3. Proposal distributions for network structure and parameters

ABC-MCMC for Networks

Simulations

Data Analysis 0000 Discussion 00

1. Simulating Y^* for Network $\{\Theta^*, G^*\}$

Generally, we simulate gene expression at time t as a function of the gene expression at the previous time point:

$$\mathbf{y}_t^{\star} = f_t(\mathbf{y}_{t-1}, \Theta^{\star})$$

In practice, for continuous data (e.g., microarrays):

• Set
$$\mathbf{y}_1^\star = \mathbf{y}_1$$
.

 Generate one-step-ahead predictors based on VAR(1) model on gene expression for t = 2,..., T:

$$\mathbf{y}_t^\star = \Theta^\star \mathbf{y}_{t-1}$$

• Note: this is a deterministic simulation procedure...

ABC-MCMC for Networks

Simulations

Data Analysis 0000 Discussion 00

2. Distance Function and Tolerance

Distance functions (ρ):

• Canberra:
$$\rho(Y^*, Y) = \sum_{t=1}^{T} \sum_{i=1}^{P} \frac{|y_{it}^* - y_{it}|}{|y_{it}^* + y_{it}|}$$

• Euclidean: $\rho(Y^*, Y) = \sqrt{\sum_{t=1}^{T} \sum_{i=1}^{P} (y_{it}^* - y_{it})^2}$

• Manhattan:
$$\rho(Y^{\star}, Y) = \sum_{t=1}^{r} \sum_{i=1}^{r} |y_{it}^{\star} - y_{it}|$$

Multivariate Time Series (MVT):

$$\rho(\mathbf{Y}^{\star},\mathbf{Y}) = \frac{1}{T} \sum_{t=1}^{I} \left[(\mathbf{y}_t - \mathbf{y}_t^{\star}) - (\hat{\mathbf{y}}_t - \hat{\mathbf{y}}_t^{\star}) \right]' \hat{\Sigma}^{-1} \left[(\mathbf{y}_t - \mathbf{y}_t^{\star}) - (\hat{\mathbf{y}}_t - \hat{\mathbf{y}}_t^{\star}) \right]$$

ABC-MCMC for Networks

Simulations

Data Analysis

Discussion 00

2. Distance Function and Tolerance

Tolerance (ϵ) :

- "Cooling" procedure: decreasing sequence of thresholds, until minimum pre-set threshold ϵ is reached
- $\epsilon = 1\%$ quantile of distances $\rho(Y^{\star}, Y)$ estimated from 5000 random networks

ABC-MCMC for Networks

Simulations

Data Analysis 0000 Discussion 00

3. Network Proposals

- With networks, we must propose both a new structure and a new set of parameters
- Recall that we use two representations of a given network: the adjacency matrix ${\cal G}$ and the parameter matrix Θ

- Joint distribution of G and Θ may be seen as a completion to the marginal density of Θ

ABC-MCMC for Networks

Simulations

Data Analysis 0000 Discussion 00

Two-Step Proposal Distribution

• Two-step proposal distribution: $q(G^*|G^i)$ and $q(\Theta^*|\Theta^i, G^*)$:

Two-step proposal distribution

ABC-MCMC for Networks 000000000000000

Two-Step Proposal Distribution

• Two-step proposal distribution: $q(G^*|G^i)$ and $q(\Theta^*|\Theta^i, G^*)$:

Adjacency matrix Parameter matrix $\Theta^{i} = \begin{array}{c} \mathsf{A} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -2 \\ \mathsf{C} \begin{pmatrix} 3 & 0 & 0 \\ 3 & 0 & 0 \end{pmatrix} \end{array}$ $\mathbf{A} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ Add, delete, reverse edge (Husmeier, 2003) $G^* = B \begin{vmatrix} 0 & 0 \\ 1 & 0 \end{vmatrix}$

Two-step proposal distribution

ABC-MCMC for Networks

Simulations

Data Analysis 0000 Discussion 00

Two-Step Proposal Distribution

• Two-step proposal distribution: $q(G^*|G^i)$ and $q(\Theta^*|\Theta^i, G^*)$:

Two-step proposal distribution

ABC-MCMC for Networks

Simulations

Data Analysis 0000 Discussion 00

ABC-MCMC Network Method

ABC-Net Algorithm:

- Initialize Θⁱ, Gⁱ, i = 0.
 (a) Propose G* according to q(G|Gⁱ).
 (b) Propose Θ* according to q(Θ|Θⁱ, G*).
 Simulate Y* from f(·|Θ*, G*).
 Set {Gⁱ⁺¹, Θⁱ⁺¹} = {G*, Θ*} with probability
 α = min{1, π(G*)π(Θ*|G*)q(G*|G*)q(Θ*|Θ*) π(G)π(Θⁱ)Gⁱ)q(G*|Gⁱ)q(Θ*|Θⁱ)</sub>1 [ρ(y*, y) ≤ ε]}
 and {Gⁱ⁺¹, Θⁱ⁺¹} = {Gⁱ, Θⁱ} with probability 1 - α.
 Set i = i + 1. If i < N (a pre-set number of iterations), return to 1.
 - Output: dependent samples from the stationary distribution of the chain, f(Θ, G|ρ(Y^{*}, Y) ≤ ε)
 - Burn-in period, number of iterations, chain thinning, ... Details

ABC-MCMC for Networks

Simulations •000000 Data Analysis 0000 Discussion 00

Simulations: Raf Signalling Protein Pathway

• Simulations based on currently accepted gold-standard Raf signalling pathway (Sachs et al., 2005) in human immune system cells for 11 genes (20 total edges)

- Simulate T = 20 time points, R = 1 replicate using VAR model
- Run ABC-Net algorithm for 10 independent chains of length 1×10^6 with thinning interval of 50
- Use Gelman-Rubin statistic to assess convergence across chains

ABC-MCMC for Network

Simulations

Data Analysis 0000 Discussion 00

ABC-Net Simulations

- 1. Choice of distance function ρ and tolerance ϵ
- 2. Suitability of VAR simulator for data generated with alternative models (nonlinear models, second-order models, and ordinary differential equations)
- 3. Qualitative assessment of edge "flexibility"

Simulations I: Choice of ρ and ϵ

- Set ϵ to be the 1%, 5%, or 10% quantile of distances ρ from 5000 random networks

ABC-MCMC for Networks

Simulations

Data Analysis 0000 Discussion 00

Simulations II: Suitability of VAR Simulator

 Alternative models: first-order nonlinear VAR (VAR-NL(1)), second-order VAR (VAR(2)), second-order nonlinear VAR (VAR-NL(2)), and ordinary differential equation (ODE)

Area Under the Curve (By Model)

ABC-MCMC for Networks

Simulations

Data Analysis 0000 Discussion 00

Simulations III: Flexibility of edges

ABC-MCMC for Networks

Simulations

Data Analysis 0000 Discussion 00

Simulations III: Flexibility of edges

ABC-MCMC for Networks

Simulations

Data Analysis 0000 Discussion 00

Simulations III: Flexibility of edges

ABC-MCMC for Network

Simulations

Data Analysis 0000 Discussion 00

Simulations: Discussion

- Canberra, Euclidean, and Manhattan distances perform similarly in terms of AUC; MVT distance does not perform as well
- Performance of ABC-Net deteriorates for alternative models when a VAR simulator is used
 - Alternative simulators may be used in situations where other models are known to be more appropriate
- "Flexible" and "rigid" edges yield additional information about the dynamics of the network
 - Rigidity and flexibility are closely linked to the network dynamics, robustness, and sensitivity

ABC-MCMC for Network

Simulations

Data Analysis •000 Discussion 00

Data Analysis

- Lots of network inference algorithms exist; what additional information can ABC-Net provide?
- Similar methods may yield very different results why?
 - False positives, complicated network structures, small number of time points, ...
- Real data analysis: S.O.S. DNA repair system in Escherichia coli
 - Empirical Bayes Dynamic Bayesian Network (EBDBN) method (Rau et al. (2010)): empirical Bayesian estimation of parameters in a linear state-space model
 - ABC-Net

ABC-MCMC for Network

Simulations

Data Analysis 0000 Discussion 00

Data Analysis: S.O.S. DNA Repair System in E. coli

- S.O.S. DNA repair system of *Escherichia coli* (Ronen et al., 2002)
- 8 genes, with lexA as a master regulator that inhibits S.O.S. genes under normal conditions but activates them when DNA damage is sensed by recA ("single-input" module architecture)
- 50 time points, 1 replicate
- Maximum fan-in for ABC-Net method constrained to 2

ABC-MCMC for Networks

Simulations

Data Analysis

Discussion 00

Results: S.O.S. DNA Repair System

ABC-MCMC for Networks

Simulations

Data Analysis

Discussion 00

Results: S.O.S. DNA Repair System

ABC-MCMC for Networks

Simulations

Data Analysis

Discussion 00

Results: S.O.S. DNA Repair System

ABC-MCMC for Networks

Simulations

Data Analysis

Discussion 00

Discussion: S.O.S. DNA Repair System

Recall my original question: Is it possible to determine whether parts of a given network are identifiable, given the available data?

• "Rigid" and "flexible" edges identified by the ABC-Net algorithm are a first step to understanding what can be inferred from the given data

- S.O.S. DNA repair is a simple, yet sophisticated network \Rightarrow network is reacting to conditions within the cell
- In S.O.S. system, lexA decreases very rapidly, so S.O.S. genes turn on at about the same time
 - Time-delay models (e.g., autoregressive models) show stronger link between recA and S.O.S. genes

- Inferring gene regulatory networks is intrinsically difficult: complex network topology, small number of replicates and time points, noise in expression measurements
- Approximate Bayesian Computation methods can reveal information about the dynamics of biological systems from time-series gene expression data
- ABC-MCMC Network (ABC-Net) approach uses a simulation-based Bayesian method with few distributional assumptions to infer approximate posterior distributions in small networks
- Results seem to suggest that given the available data, some gene-to-gene interactions are easier to infer than others...

ABC-MCMC for Network

Simulations

Data Analysis 0000 Discussion

Future Work

- Further examine components of ABC-Net method:
 - More sophisticated data simulators and techniques to identify optimal simulators for real data
 - Alternative and efficient network structure proposal schemes
 - Objective criterion to characterize approximate posterior distributions (e.g., introduce hierarchical prior on latent indicator variable *G* in ABC-Net method, and use local Bayes factor to quantitatively examine evidence of network edges)
- Examine alternative simulators and distance functions for count-based measures of gene expression (e.g., RNA sequencing data)

ABC-MCMC for Network

imulations

Data Analysis 0000 Discussion 00

Acknowledgements

Rebecca W. Doerge (Purdue) Florence Jaffrézic (INRA-GABI) Bruce Craig (Purdue) Jayanta Ghosh (Purdue) Alan Qi (Purdue)

Jean-Louis Foulley (INRA-GABI) RWD research group @ Purdue My Truong Doug Crabill

College of Science - Department of Statistics Statistical Bioinformatics Center

Introd	uction
0000	0

ABC-MCMC for Networks

Simulations

Data Analysis 0000 Discussion 00

References

- Rau, A. *et al.* (2011) Reverse engineering gene networks using approximate Bayesian computation. *Statistics and Computing* (in press).
- Rau, A. *et al.* (2010) An empirical Bayesian method for estimating biological networks from temporal microarray data. *SAGMB* 9:1, Article 9.

- Husmeier, D. (2003) Sensitivity and specificity of inferring genetic regulatory interactions from microarray experiments with dynamic Bayesian networks. *Bioinformatics* 19, 2271-2282.
- Marjoram, P. et al. (2003) Markov chain Monte Carlo without likelihoods. PNAS 100, 15324-15328.
- Ronen, M. *et al.* (2002) Assigning numbers to the arrows: parameterizing a gene regulation network by using accurate expression kinetics.*PNAS* 99, 10555-10560.
- Sachs, K. *et al.* (2005) Causal protein-signalling networks derived from multiparameter single-cell data. *Science* 308(5721), 523-529.

ABC-MCMC for Network

Simulations

Data Analysis 0000 Discussion 00

LFN Implementation Details

- Burn-in period
 - Cooling procedure: Temper acceptance with exponential cooling scheme, starting at some initial temperature ϵ_0 and cooling to $\epsilon_{i+1} = \lambda \epsilon_i$ until the minimal temperature $\epsilon_{\min} = \epsilon$ is reached. We use $\lambda = 0.90$ and set $\epsilon_0 = \epsilon \lambda^{-10}$.
 - Use each ϵ_i for 200 iterations, then cool to next value.
 - If ϵ_{\min} is reached and the acceptance rate for the chain \leq 1%, the burn-in period is reinitialized.
- Chain length:
 - 10 chains for 1×10^6 iterations each (1×10^7 iterations total)
 - Thinning interval of 50 $(2 \times 10^5$ remaining iterations)
 - Inference made on samples corresponding to smallest 1% of $\rho({\bf y}^{\star}, {\bf y})$ (2000 iterations)

