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Introduction ABC-MCMC for Networks Simulations Data Analysis Discussion

Gene Expression

• Genes: Functional regions of DNA that encode proteins and RNA
molecules

• Expression levels of thousands of genes can be measured using
“high-throughput” technologies (e.g., microarrays, serial analysis of
gene expression, next-generation sequencing)
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Gene Regulatory Networks

• Gene regulatory networks: set of genes that interact indirectly with
one another through proteins called transcription factors (TF)

• Abundance of TF is difficult to measure ⇒ expression levels of
corresponding genes usually used as proxy
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Reverse Engineering Gene Regulatory Networks

• Expression levels of thousands of genes
can be measured using “high-throughput”
technologies (few replicates or time
points)

• Objective: Use time-course gene
expression data to elucidate information
about patterns of relationships of gene
expression
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Bayesian Network Framework

Bayesian Network (BN):

• Graphical model to represent conditional probabilistic relationships
among random variables

• Graphical structure, G = (V ,E ) defined by a set of vertices V and
edges E and a family of conditional distributions F

Dynamic Bayesian Network (DBN):

• BN limitations: no feedback loops, discrete data, equivalence classes

• Unfold BN over time
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Identifiability of gene regulatory (sub-)networks?

• Often, similar inference approaches yield very different network
structures on a common dataset

• In addition, complicated network motifs may be difficult or impossible
to infer from the available data

• Question: Is it possible to determine whether parts of a given
network are identifiable, given the available data?
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Outline for the rest of the talk

• Approximate Bayesian Computation
• Background and motivation
• Monte Carlo approaches

• ABC-MCMC for Networks
• Simulation studies
• Real data analysis: SOS DNA repair system in E. coli

• Discussion
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Some notation
Let observed time-course gene expression data be Y = {yt : t = 1, . . . ,T},
where yt = (yt1, ..., ytP )

′ for P genes at T equally spaced time points.

Two related characterizations of a gene regulatory network:

• Adjacency matrix G (Gjk = 1 if gene k regulates gene j , 0 otherwise)

• Parameter matrix Θ (θjk represents the relationship between gene k

at time t − 1 and gene j at time t)
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Bayesian Framework

• High dimensional problem: many possible gene-to-gene interactions
(O(P2)), usually few time points (T < 10)

• Number of possible network structures increases exponentially as the
number of genes increases, and many network structures may yield
similarly high likelihoods

• Examining the shape of posterior distributions may give additional
information about the structure and inferability of specific
gene-to-gene interactions

• A priori biological information may be encoded into the prior
distributions
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Likelihood specification

• For a given matrix of gene regulatory network parameters Θ:

Y ∼
∏

t

f (yt ; yt−1,Θ)

where y0 = 0.

• Simple, linear models (e.g., the first-order vector autoregressive
(VAR(1)) model) have been found to be good approximations in
some cases to the dynamics of time-course expression data:

f (yt ; yt−1,Θ) = Θyt−1 + et

where E (et) = 0, E (ete
′
t) = Σ (a positive definite covariance matrix),

and E (ete
′
t′) = 0.
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Network prior distributions (G and Θ)

• Gene regulatory networks typically sparse with spoke-and-hub
structure and few regulators per gene (fan-in)
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Prior distributions:

• π(G ) is uniform over all structures, with maximum fan-in of 5 or less

• π(θjk |Gjk = 1) ∼ U(−2, 2)
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Approximate Bayesan Computation (ABC)

• Objective: infer network from observed expression data Y via the
posterior

π(Θ,G |Y ) ∝ f (Y |Θ)π(Θ|G )π(G )

• Without restrictive distributional assumptions on model parameters
(et), likelihood may be difficult to calculate

• Approximate Bayesian Computation: Sampling-based Bayesian
approach to infer approximate posterior distribution
π(Θ|ρ(Y ?,Y ) ≤ ε) using simulated data Y ?, a distance function ρ,
and tolerance ε

• Approximate when ε > 0 and equivalent to simulating from the prior
when ε → ∞
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ABC rejection method

1. Generate G and Θ from π(G ) and π(Θ|G ), respectively

2. Generate one-step-ahead predictors y?t from the VAR(1)
model, given yt−1 and Θ?.

3. Calculate the distance ρ(Y ?,Y ) between Y and Y ?.

4. Accept (Θ?,G ?) if ρ ≤ ε.

Very inefficient ⇒ Only 5 proposed networks (Θ?,G ?) are accepted out
of a total of 1× 107 proposals!
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ABC rejection method

1. Generate G and Θ from π(G ) and π(Θ|G ), respectively

⇒ Sequential methods, Markov chain Monte Carlo

2. Generate one-step-ahead predictors y?t from the VAR(1)
model, given yt−1 and Θ?.

3. Calculate the distance ρ(Y ?,Y ) between Y and Y ?.

⇒ Distance criterion, summary statistics

4. Accept (Θ?,G ?) if ρ ≤ ε.

⇒ Post-sampling regression, nonparametric estimation

Very inefficient ⇒ Only 5 proposed networks (Θ?,G ?) are accepted out
of a total of 1× 107 proposals!
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ABC-MCMC (Marjoram et al., 2003)

• ABC-Markov chain Monte Carlo (MCMC): Construct a Markov chain
(e.g., using Metropolis-Hastings algorithm) with approximate
posterior distribution π(Θ|ρ(Y ?,Y ) ≤ ε) as equilibrium distribution

• Given previous {Θi ,G i}, a proposal {Θ?,G ?} is accepted at iteration
(i + 1) with probability

α = min

{

1,
π(Θ?,G ?)q(Θi ,G i |Θ?,G ?)

π(Θi ,G i)q(Θ?,G ?|Θi ,G i)
1(ρ(Y ?,Y ) < ε)

}

where q(·|·) is the proposal distribution and π(Θ,G ) = π(Θ|G )π(G )
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Adapting ABC-MCMC to Networks: ABC-Net

Adaptations must be made to the ABC-MCMC method of Marjoram et al.
(2003) for the context of gene regulatory networks:

1. Computationally efficient way to simulate expression data Y ? from a
known regulatory network {Θ?,G ?}

2. Appropriate distance function ρ and tolerance ε to compare simulated
(Y ?) and observed (Y ) data

3. Proposal distributions for network structure and parameters
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1. Simulating Y
? for Network {Θ?

,G
?}

Generally, we simulate gene expression at time t as a function of the gene
expression at the previous time point:

y?t = ft(yt−1,Θ
?)

In practice, for continuous data (e.g., microarrays):

• Set y?1 = y1.

• Generate one-step-ahead predictors based on VAR(1) model on gene
expression for t = 2, . . . ,T :

y?t = Θ?yt−1

• Note: this is a deterministic simulation procedure...
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2. Distance Function and Tolerance

Distance functions (ρ):

• Canberra: ρ(Y ?,Y ) =

T
∑

t=1

P
∑

i=1

|y?it − yit |

|y?it + yit |

• Euclidean: ρ(Y ?,Y ) =

√

√

√

√

T
∑

t=1

P
∑

i=1

(y?it − yit)
2

• Manhattan: ρ(Y ?,Y ) =

T
∑

t=1

P
∑

i=1

|y?it − yit |

• Multivariate Time Series (MVT):

ρ(Y ?,Y ) = 1
T

T
∑

t=1

[(yt − y?t )− (ŷt − ŷ?t )]
′ Σ̂−1 [(yt − y?t )− (ŷt − ŷ?t )]
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2. Distance Function and Tolerance

Tolerance (ε):

• “Cooling” procedure: decreasing sequence of thresholds, until
minimum pre-set threshold ε is reached

• ε = 1% quantile of distances ρ(Y ?,Y ) estimated from 5000 random
networks
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3. Network Proposals

• With networks, we must propose both a new structure and a new set
of parameters

• Recall that we use two representations of a given network: the
adjacency matrix G and the parameter matrix Θ
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marginal density of Θ
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Two-Step Proposal Distribution

• Two-step proposal distribution: q(G ?|G i) and q(Θ?|Θi ,G ?):

Two-step proposal distribution
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ABC-MCMC Network Method

ABC-Net Algorithm:

0. Initialize Θi , G i , i = 0.
1. (a) Propose G ? according to q(G |G i).

(b) Propose Θ? according to q(Θ|Θi ,G ?).
2. Simulate Y ? from f (·|Θ?,G ?).
3. Set {G i+1, Θi+1} = {G ?, Θ?} with probability

α = min{1, π(G
?)π(Θ?|G?)q(G i |G?)q(Θi |Θ?)

π(G i )π(Θi |G i )q(G?|G i )q(Θ?|Θi )
1 [ρ(y?, y) ≤ ε]}

and {G i+1,Θi+1} = {G i ,Θi} with probability 1− α.
4. Set i = i + 1. If i < N (a pre-set number of iterations), return to 1.

• Output: dependent samples from the stationary distribution of the
chain, f (Θ,G |ρ(Y ?,Y ) ≤ ε)

• Burn-in period, number of iterations, chain thinning, ... Details
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Simulations: Raf Signalling Protein Pathway
• Simulations based on currently accepted gold-standard Raf signalling
pathway (Sachs et al., 2005) in human immune system cells for 11
genes (20 total edges)

• Simulate T = 20 time points, R = 1 replicate using VAR model
• Run ABC-Net algorithm for 10 independent chains of length 1× 106

with thinning interval of 50
• Use Gelman-Rubin statistic to assess convergence across chains
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ABC-Net Simulations

1. Choice of distance function ρ and tolerance ε

2. Suitability of VAR simulator for data generated with alternative
models (nonlinear models, second-order models, and ordinary
differential equations)

3. Qualitative assessment of edge “flexibility”
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Simulations I: Choice of ρ and ε

• Set ε to be the 1%, 5%, or 10% quantile of distances ρ from 5000
random networks
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Simulations II: Suitability of VAR Simulator
• Alternative models: first-order nonlinear VAR (VAR-NL(1)),
second-order VAR (VAR(2)), second-order nonlinear VAR
(VAR-NL(2)), and ordinary differential equation (ODE)
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Simulations III: Flexibility of edges
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Simulations: Discussion

• Canberra, Euclidean, and Manhattan distances perform similarly in
terms of AUC; MVT distance does not perform as well

• Performance of ABC-Net deteriorates for alternative models when a
VAR simulator is used

• Alternative simulators may be used in situations where other models
are known to be more appropriate

• “Flexible” and “rigid” edges yield additional information about the
dynamics of the network

• Rigidity and flexibility are closely linked to the network dynamics,
robustness, and sensitivity
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Data Analysis

• Lots of network inference algorithms exist; what additional
information can ABC-Net provide?

• Similar methods may yield very different results – why?

• False positives, complicated network structures, small number of time
points, ...

• Real data analysis: S.O.S. DNA repair system in Escherichia coli

• Empirical Bayes Dynamic Bayesian Network (EBDBN) method (Rau et
al. (2010)): empirical Bayesian estimation of parameters in a linear
state-space model

• ABC-Net
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Data Analysis: S.O.S. DNA Repair System in E. coli

• S.O.S. DNA repair system of Escherichia coli (Ronen et al., 2002)
• 8 genes, with lexA as a master regulator that inhibits S.O.S. genes
under normal conditions but activates them when DNA damage is
sensed by recA (“single-input” module architecture)

• 50 time points, 1 replicate
• Maximum fan-in for ABC-Net method constrained to 2
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Results: S.O.S. DNA Repair System
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Discussion: S.O.S. DNA Repair System

Recall my original question: Is it possible to determine whether parts

of a given network are identifiable, given the available data?

• “Rigid” and “flexible” edges identified by the ABC-Net algorithm are
a first step to understanding what can be inferred from the given data

• S.O.S. DNA repair is a simple, yet sophisticated network ⇒ network
is reacting to conditions within the cell

• In S.O.S. system, lexA decreases very rapidly, so S.O.S. genes turn on
at about the same time

• Time-delay models (e.g., autoregressive models) show stronger link
between recA and S.O.S. genes
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Summary

• Inferring gene regulatory networks is intrinsically difficult: complex
network topology, small number of replicates and time points, noise in
expression measurements

• Approximate Bayesian Computation methods can reveal information
about the dynamics of biological systems from time-series gene
expression data

• ABC-MCMC Network (ABC-Net) approach uses a simulation-based
Bayesian method with few distributional assumptions to infer
approximate posterior distributions in small networks

• Results seem to suggest that given the available data, some
gene-to-gene interactions are easier to infer than others...
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Future Work

• Further examine components of ABC-Net method:
• More sophisticated data simulators and techniques to identify optimal

simulators for real data
• Alternative and efficient network structure proposal schemes
• Objective criterion to characterize approximate posterior distributions

(e.g., introduce hierarchical prior on latent indicator variable G in
ABC-Net method, and use local Bayes factor to quantitatively examine
evidence of network edges)

• Examine alternative simulators and distance functions for count-based
measures of gene expression (e.g., RNA sequencing data)
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LFN Implementation Details

• Burn-in period
• Cooling procedure: Temper acceptance with exponential cooling

scheme, starting at some initial temperature ε0 and cooling to
εi+1 = λεi until the minimal temperature εmin = ε is reached. We use
λ = 0.90 and set ε0 = ελ−10.

• Use each εi for 200 iterations, then cool to next value.
• If εmin is reached and the acceptance rate for the chain ≤ 1%, the

burn-in period is reinitialized.

• Chain length:
• 10 chains for 1× 106 iterations each (1 × 107 iterations total)
• Thinning interval of 50 (2 × 105 remaining iterations)
• Inference made on samples corresponding to smallest 1% of ρ(y?, y)

(2000 iterations)

Back
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