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Framework
[ ]

Application context

Market-risk assessment for high-dimensional asset portfolio.

e Portfolio variation Vi ¢in between t and t + h affected by risk
factors, specifically by price returns X of portfolio products.

o A widely used risk measure : Value-at-risk.

VaRi_, at a risk level a over a given time horizon h
= the a-quantile of the portfolio variation between t and t + h.

Pr( Vt,t+h < VaR]__a) - 05%.
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VaR Computation

o Method = the analytic VaR, built on 2 assumptions :

@ portfolio variation as a linear combination of product
returns, Vi eph = a' Xeerh,

@® normal distribution assumptions about returns,
Xt7t+1|z ~ NP(O7 Z)

= VaRy_, = VhvaT £ad~1(a), calculated from ¥,

with ®~1(a) the a-quantile of the standard normal distribution.

e Problem : sensitivity of VaR results to variations of 3 + unstable
matrix estimator, as with a small sample.

— Requirement : stable covariance matrix between returns.
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e Portfolio made of 27 energy products.

e The covariance matrix for the returns X on the products in the
portfolio to estimate, i.e 378 elements to estimate.

e Matrix to estimate from 200 observations.

Mathilde Bouriga Objective Bayesian model selection ———  5/35



Framework
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Problem formalization

X[E~ NP(07 I,
where ¥ is a p x p symmetric positive-definite matrix.

Problem : Estimation of X from a sample of X, X=(X, ..., X,)
where p is close to n.

Classical estimator based on the scatter matrix S, = X7 X :
inappropriate.

e unstable estimator

o distortion of the eigenstructure

e S, no longer positive definite if p > n.
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Alternatives

General approaches to induce stability over the unstructured classical
estimator of the covariance matrix :

e by shrinking of eigenvalues,

o by shrinking this estimate toward a parsimonious, structured form
of the matrix,
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Alternatives

General approaches to induce stability over the unstructured classical
estimator of the covariance matrix :

e by imposing various restrictions on the model and then estimating
covariance matrix related to these structural assumptions.
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Alternatives

General approaches to induce stability over the unstructured classical
estimator of the covariance matrix :

® by imposing various restrictions on the model and then estimating
covariance matrix related to these structural assumptions.

Bayesian inference on covariance matrices
in Gaussian Graphical models
= Visual aid - interpretation / Aid in parameter estimation
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Background

Graph theory

An undirected graph is a pair G = (V/, E) with vertex set V and edge
set E = {(i,j)} for some pairs (i,j) € V.

A clique C of G is a set of pairwise adjacent vertices.

5 4

Figure: Graph G with 5 nodes and 6 edges.
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Background

Matrix theory

Let ¥ be a matrix, the G-incomplete symmetric matrix ¥F is defined
as an incomplete symmetric matrix indexed by V' x V/, in which the
elements are those of ¥;; for all (i, /) € E, and with the remaining
elements unspecified.

011 012 * * J15

021 022 023 014 %

ZE = * 032 033 034 *
* 042 043 044 045

051 * *  Os4 Os5

A completion of an incomplete matrix is a specific choice of values for

the unspecified entries.
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[e]e] o]

Background

Gaussian graphical model GGM (1)

A GGM uses a graphical structure to define a set of pairwise
conditional independence relationships.

e With precision matrix 2 = £, X; and X; of X are conditionally
independent (given the neighboring variables of each) iff w; = 0.

e If G =(V,E) is an undirected graph whose vertices are
associated with X, (|V| = p), wjj = 0 for all pairs (i,j) ¢ E.

wip wie O 0  wis
wo1 w2 w23 wiu 0
Q= 0 W32 W33 W34 0 S X1 X3 ‘Xg, )(47 Xs ...
0 war waz was wss
ws1 0 0 wss wss
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Background

GGM (2)

Let G = (V, E) and MT(G) denote the cone of |V| x |V| positive
definite matrices such that ij entry is equal to 0 whenever (i,j) ¢ E.

A GGM with graph G is
Me={N(0,5)| Q=%""and Qe MT(G)}.

On the covariance space, incomplete matrices Y€ to handle : far from
simple.
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Estimation of GGM

Two challenging problems for covariance estimation in GGM

@ graphical model selection problem
= problem of estimating the zero-pattern of €,

@® covariance matrix estimation based on the model selected.
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Estimation of GGM

Two challenging problems for covariance estimation in GGM

@ graphical model selection problem
= problem of estimating the zero-pattern of €,

@® covariance matrix estimation based on the model selected.

in a Bayesian framework.

X|Z ~ N,(0,%), Q=351 c M™(G)
Parameters : Q, nuisance parameter, and G, parameter of interest.
e priors to handle : 7(Q, G) = n(Q|G)n(G),
e posterior to handle : 7(G|X) = [ 7(Q, G|X)d<Q,

e estimator to choose : @
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Estimation of GGM
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With our real data

Example : focus on the 9 first variables.
Starting from the empirical covariance matrix, we seek to reduce
problem complexity and find the underlying conditional-dependency

structures.
1.00 085 0.76 075 064 072 066 059 0.60 ) 1 1 1 ) 1 0 0 1
085 1.00 084 079 072 074 069 063 062 1 0 1 0 0 0 0 0 of
0.76 0.84 1.00 0.88 0.78 0.75 0.73 0.64 0.66 1 1 0 1 10 1 0 o
075 079 088 1.00 080 080 076 067 070 1 0 1 0 1 1 1 1 o
064 072 078 0.80 1.00 083 069 077 063 ... b 0 0 1 1 0 1 0 1 i
072 074 0.75 0.80 083 1.00 o7 0.80 064 1 0 o0 1 1 o0 1 1 1
066 069 073 076 069 o7 1.00 0.60 089 0 o 1 1 o 1 o 1 1
059 063 064 067 077 090 060 1.00 059 0 0 o 1 1 1 1 0 1
0.60 062 0.66 0.70 0863 064 089 059 1.00 1 0 0 0 0 1 1 1 0f

Figure: XX and the underlying structure.
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Estimation of GGM
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Substantial problems

e Which priors, 7(X|G) and 7(G), for efficient model search ?
(explicit expression for prior in the decomposable case)

e Properness conditions for the posterior distribution ? (easier to
derive in the decomposable case)

e Which tool to model comparison ? (depending on the choice of
priors : proper or not)

o Which graphical model-selection procedure 7 (search
computationally less expensive in the decomposable case)
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Estimation of GGM
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Decomposable or non-decomposable graphs ?

Decomposition

(A, B, C), subsets of V, form a decomposition of G if C is complete,
i.e a set of pairwise adjacent vertices, and C is separator of A, B, i.e
any path from A to B goes through C.

A sequence of subgraphs that cannot be decomposed further are the
prime components of a graph ; if every prime component is clique, the
graph is decomposable.

Any given graph can G be embedded in a decomposable graph by
adding edges, the decomposable graph is called a triangulation of G.
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Estimation of GGM
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Decomposable or non-decomposable graphs ?

—
(]

4

th

Figure: Graph decomposition.

A ={Xq, Xa, Xa, X5} is a prime component, B = {Xa, X3, Xs} is a
clique and C = {X3, X4} is a separator.
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Decomposable or non-decomposable graphs ?

th

4

Figure: Triangulated graph.

All the prime components are cliques.
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Framework Estimation of GG Model comparison Model sear Applications

Although, in the literature, attention is often restricted to the
decomposable case, only a small fraction of the total number of graphs
on p nodes is decomposable.

% of decomposable graphs
o
3
I

044 — —{
w— — — —
W — — —
il mEmE. 11
i . : . . : .

2 3 4 5 ] 7 g

Number of nodes

Figure: Proportion of decomposable graphs depending on the number of
vertices.

= Graphical model selection for general graphs.
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Estimation of GGM
@000

Priors

Standard prior for G

We choose to consider a Bernoulli distribution on the edge inclusion
indicators with success probability 3.

7(G with k edges|3) oc *(1 — g)™
with m = (p D the maximum number of possible edges.

_ 1 .
0= 1 will encourage sparse graphs.
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Estimation of GGM
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Priors

Standard prior for Q in the literature (1)

As the GGM with graph G = (V, E) is a regular exponential family
[Lau96] with canonical parameter €, the standard conjugate prior for
Q in M*(G) can be written as

1
76(Qd, DE) = >

_ 1
ng)'(é 2)/2 exp {—2tr(QDE)}

where 6, DE are such that the normalizing constant Z(G, 4, DE) is
finite.
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Priors

Standard prior for Q (2)

1
/ 1Q0=2/2 exp {—tr(QDE)} dQ < oo
M+(G) 2

if § > 2 and the incomplete matrix DE admits a positive completion.

In this case, it is called G-Wishart distribution with parameters
(6, DF).

e In decomposable cases, Z(G, 6, DF) available in a closed form,

e in non-decomposable cases, Z(G, 6, DE) not available in a closed
form.
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Estimation of GGM
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Priors

A new objective prior for Q (1)

We propose to consider this noninformative prior for Q of a GGM with
arbitrary graph G :

mn(QG) o Q7T for Q € MT(G).

e Choice motivation : the involved default-procedure for GGM
selection yields efficient posterior seperation of models.

o A particular case : this distribution corresponds to the prior
proposed by [CS07] for model selection when considering only the
decomposable graphs.
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Estimation of GGM
0

Posterior of G

Proposition : The posterior density of G

im(p _ 2)m—k

p-1 p(p—1)
m(G|X) o N —

Z(G,n,X"X) with m = 5

is proper iff

Z(G,n, (XTX)E) = [iye(g) 19172 exp {=1/2tr(QXTX)E)} dO
is finite.

Sufficient conditions :

e n>?2

e (XTX)E has a positive completion : condition hard to find for
general graphs.
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Estimation of GGM
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Posterior of G

Proposition : Let GT = (V, ET) be a minimal triangulation of G - a
decomposable graph where E™ O E, with the property that removal of
any edge in G* which is not an edge in G will not be decomposable.

Let CT denote the set of cliques of GT.

n> énagi|C+| = (XTX)E has a positive completion.
€

Particular case : for the full graph, well-known condition.

Conclusion :
o 71(G|X) proper for all the graphs, when n > p.

e |f n < p, restriction on the graphs under consideration. 7(G|X)
proper for any graph in S¢ = {G| Z(G, n, (XTX)F) < oo}.
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Model comparison
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Bayes factors

Structural learning in Gaussian graphical models usually involves
assessing the posterior probability of the graphs to evaluate
m(G1|X) _ 7(G1)

(GoX) — W(GQ)BF”(X)’

where

_ f(X|G)
0= fixi)
where f(X|G;) = fM+(G) f(X|Qi, G)i(2 G;)dQ; is the marginal
likelihood of G;.

Bayesian model comparison is usually based on Bayes factors.
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Model comparison
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Fractional Bayes factors

Definition

Using improper priors for parameters in alternative models = Bayes
factors not well defined :

af(X|G) ., a
BFi5(X) = — , with —= unknown.
2(X) = 2 F(X]G) o
Alternative key : Fractional Bayes factors (FBF) introduced by

[O'H95] among Partial Bayes factors (PBF) [Per05].

q(X|Gi1, g)
FBFyp(X) = $2171:8)
12X) = (XGrog)

with q(X|G,g) = [ii (6 F(X|Q)8mg(Q|G, X, g)dQ, the fractional
marginal likelihood of G.
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Fractional Bayes factors

Graph score based on Laplace approximations

1 Z(G,n,XTX)
AV 27Tnp Z(G7gn7gXTX)

q(X|G,g) = for ng > 2.

We use the diagonal Laplace approximation proposed by [LD10] to
estimate Z(G,.,.) for any graph G.
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Model search
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A challenging issue

e p nodes in a graph = m = p(pgl) possible edges

= 2™ possible graphs.
Beyond p = 7, enumeration becomes a practical impossibility.

o Need to scalable search methodologies that are capable of finding
good models, or at least distinguishing the important edges from
the irrelevant ones.

e Main classes of graphical model-selection procedures :
compositional methods and direct search.

= Framework proposed by [BMMOQ9] which is a direct search method
initialized with a set of graphs issued from a compositional method.
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Model search
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Stochastic Local Search

An heuristic search technique

An iterative algorithm which tries to identify the most likely graphs,
inspired by [SC08].

At time t, starting with
e t — 1 distinct explored graphs (G, ..., Gt—1),
e t—1 scores q(X|G1,g), -, 4(X|Ge-1,8)

e estimated edge-inclusion probabilites Pr(wj; # 0|Gi, ..., Gi—1),
i?.j = 1, "'7p'
3 steps :

@ perform a stochastic local update to the graph based on
edge-inclusion probabilities = new graph G;,

@ score the graph = q(X|Gt, g),
© update the edge-inclusion probabilities = Pr(wjj # 0|Ga, ..., G¢).
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Model search
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Stochastic Local Search

Local update via 2 kinds of moves :

o |ocal moves : choose randomly to add or delete an edge.
If add, do so in proportion to their estimated edge-inclusion
probabilites. If delete, do so in inverse proportion to them,

o resampling step : revisite one of (Gy, ..., G¢—1) in proportion to
their score and make local move from the resampled graph.

Before SLS, good to initialize the search with a set of promising
graphs for resampling.
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Model search
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Neighborhood Fusion

Initialization strategy using Neighborhood Fusion

o Neighborhood Fusion (NF) to quickly produce large sets of high
quality GGM structures.

e |n the space of conditional regressions,

@ it exploits the sparse linear regression method LASSO
through LARS algorithm [Tib96] to compute a set of
candidate neighborhood structures for each variable,

@® it specifies a mechanism for sampling and

©® a mechanism for combining these neighborhoods to form
undirected graphs.
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Model search
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Model choice

We consider
o the graph with the highest score among those explored,

o the median probability model Gpeq :

Gmed = (V7 Emed)y
where Eneq = {(i,j) : Pr(wj #0|Ga, ..., GT) > 0.5},

Choose it if its score is bigger and if it was not explored.
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Portfolio : 27 energy products, called futures contracts, on the UK
energy market.

Futures : contracts between two parties to exchange a specified commodity
of standardized quantity and quality for a price agreed today with delivery
occurring at a specified future date, the delivery date.

Here 27 futures :

e 9 of different delivery periods on the Electricity market (1Month
AHead-2MAH-3MAH-1Quarter AHead-2QAH-1Season AHead-2SAH-3SAH-4SAH),

o 18 of different delivery periods on the Gaz market
(IMAH-2MAH-3MAH-4MAH-5MAH-6MAH-7MAH-8MAH-9MAH-10MAH-11MAH-12MAH-
13MAH-14MAH-15MAH-16MAH-17MAH-18MAH).

To understand futures... :

1QAH 1SAH
IMAH 2MAH 3MAH
09/12/2011
01 02 03 04 05 06 07 08 00 10

2012
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Applications
[ ]

e GGM : tractable model for covariance matrices in many
dimensions and/or small samples + knowledge discovery.

e Study problem : estimation of the graph structure associated to a
GGM.

e Main contributions : complete methodology to perform objective
Bayesian model selection in general GGM - new objective matrix
prior, properness condition for posterior, tools for model
comparison and exploration of large model space.

e Perspective : estimation of the associated covariance matrix.
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