Framework	Estimation of GGM	Model comparison	Model search	Applications
000000000	000000000000000000000000000000000000000		00000	000

Objective Bayesian model selection in general Gaussian graphical models

Mathilde Bouriga

EDF R&D Département OSIRIS - Universite Paris-Dauphine

8 décembre 2011

< 行 →

Framework 00000000	Estimation of GGM	Model comparison	Model search 00000	Applications

Framework Background

2 Estimation of GGM

Decomposable or non-decomposable graphs? Priors Posterior of *G*

3 Model comparison

Bayes factors Fractional Bayes factors

4 Model search

Stochastic Local Search Neighborhood Fusion

6 Applications

< (P) >

Framework ●○○○○○○○	Estimation of GGM	Model comparison	Model search 00000	Applications

Application context

Market-risk assessment for high-dimensional asset portfolio.

- Portfolio variation V_{t,t+h} between t and t + h affected by risk factors, specifically by price returns X of portfolio products.
- A widely used risk measure : Value-at-risk.
 VaR_{1-α} at a risk level α over a given time horizon h
 = the α-quantile of the portfolio variation between t and t + h.

$$Pr(V_{t,t+h} < VaR_{1-\alpha}) = \alpha\%.$$

Framework ○●○○○○○○○	Estimation of GGM	Model comparison 000	Model search 00000	Applications

VaR Computation

- Method = the analytic VaR, built on 2 assumptions :
 - **1** portfolio variation as a linear combination of product returns, $V_{t,t+h} = a^T X_{t,t+h}$,
 - **2** normal distribution assumptions about returns, $X_{t,t+1}|\Sigma \sim \mathcal{N}_{p}(\mathbf{0},\Sigma).$
 - $\Rightarrow \mathsf{VaR}_{1-\alpha} = \sqrt{h}\sqrt{a^{\mathsf{T}}\Sigma a}\Phi^{-1}(\alpha), \text{ calculated from } \hat{\Sigma},$ with $\Phi^{-1}(\alpha)$ the α -quantile of the standard normal distribution.
- Problem : sensitivity of VaR results to variations of $\hat{\Sigma}$ + unstable matrix estimator, as with a small sample.
 - \hookrightarrow Requirement : stable covariance matrix between returns.

< 🗗 >

Framework ○○●○○○○○○	Estimation of GGM	Model comparison	Model search 00000	Applications
Data				

- Portfolio made of 27 energy products.
- The covariance matrix for the returns X on the products in the portfolio to estimate, *i.e* 378 elements to estimate.
- Matrix to estimate from 200 observations.

5/35

< 行 >

Framework ○○○●○○○○○	Estimation of GGM	Model comparison	Model search 00000	Applications

Problem formalization

$X|\Sigma \sim \mathcal{N}_{p}(\mathbf{0}, \Sigma),$

where Σ is a $p \times p$ symmetric positive-definite matrix.

Problem : Estimation of Σ from a sample of X, $\mathbf{X} = (X_1, ..., X_n)$ where p is close to n.

Classical estimator based on the scatter matrix $S_n = \mathbf{X}^T \mathbf{X}$: inappropriate.

- unstable estimator
- distortion of the eigenstructure
- S_n no longer positive definite if $p \ge n$.

< 行 >

Framework ○○○○●○○○○	Estimation of GGM	Model comparison	Model search 00000	Applications
Alternatives				

General approaches to induce stability over the unstructured classical estimator of the covariance matrix :

- by shrinking of eigenvalues,
- by shrinking this estimate toward a parsimonious, structured form of the matrix,

• by imposing various restrictions on the model and then estimating covariance matrix related to these structural assumptions.

7/35

Framework	Estimation of GGM	Model comparison	Model search	Applications
000 0 0000				

Alternatives

General approaches to induce stability over the unstructured classical estimator of the covariance matrix :

- by shrinking of eigenvalues,
- by shrinking this estimate toward a parsimonious, structured form of the matrix,
- by imposing various restrictions on the model and then estimating covariance matrix related to these structural assumptions.

< (P) >

Framework ○○○○●○○○○	Estimation of GGM	Model comparison 000	Model search 00000	Applications
Alternatives				

General approaches to induce stability over the unstructured classical estimator of the covariance matrix :

- by shrinking of eigenvalues,
- by shrinking this estimate toward a parsimonious, structured form of the matrix,
- by imposing various restrictions on the model and then estimating covariance matrix related to these structural assumptions.

Bayesian inference on covariance matrices in Gaussian Graphical models ⇒ Visual aid - interpretation / Aid in parameter estimation

Framework ○○○○●○○○	Estimation of GGM	Model comparison 000	Model search 00000	Applications
Background				
Graph theory				

An undirected graph is a pair G = (V, E) with vertex set V and edge set $E = \{(i, j)\}$ for some pairs $(i, j) \in V$.

A *clique* C of G is a set of pairwise adjacent vertices.

Figure: Graph G with 5 nodes and 6 edges.

< 17 >

Framework ○○○○○●○○	Estimation of GGM	Model comparison	Model search 00000	Applications
Background				
Matrix theory				

Let Σ be a matrix, the *G*-incomplete symmetric matrix Σ^{E} is defined as an incomplete symmetric matrix indexed by $V \times V$, in which the elements are those of Σ_{ij} for all $(i,j) \in E$, and with the remaining elements unspecified.

$$\Sigma^{\mathcal{E}} = \begin{pmatrix} \sigma_{11} & \sigma_{12} & * & * & \sigma_{15} \\ \sigma_{21} & \sigma_{22} & \sigma_{23} & \sigma_{14} & * \\ * & \sigma_{32} & \sigma_{33} & \sigma_{34} & * \\ * & \sigma_{42} & \sigma_{43} & \sigma_{44} & \sigma_{45} \\ \sigma_{51} & * & * & \sigma_{54} & \sigma_{55} \end{pmatrix}$$

A *completion* of an incomplete matrix is a specific choice of values for the unspecified entries.

Framework ○○○○○○●○	Estimation of GGM	Model comparison 000	Model search 00000	Applications
Background				

Gaussian graphical model GGM (1)

A GGM uses a graphical structure to define a set of pairwise conditional independence relationships.

- With precision matrix Ω = Σ⁻¹, X_i and X_j of X are conditionally independent (given the neighboring variables of each) iff ω_{ij} = 0.
- If G = (V, E) is an undirected graph whose vertices are associated with X, (|V| = p), ω_{ij} = 0 for all pairs (i, j) ∉ E.

$$\Omega = \begin{pmatrix} \omega_{11} & \omega_{12} & 0 & 0 & \omega_{15} \\ \omega_{21} & \omega_{22} & \omega_{23} & \omega_{14} & 0 \\ 0 & \omega_{32} & \omega_{33} & \omega_{34} & 0 \\ 0 & \omega_{42} & \omega_{43} & \omega_{44} & \omega_{45} \\ \omega_{51} & 0 & 0 & \omega_{54} & \omega_{55} \end{pmatrix} \Leftrightarrow X_1 \bot X_3 | X_2, X_4, X_5 \dots$$

Framework ○○○○○○○●	Estimation of GGM	Model comparison 000	Model search 00000	Applications
Background				
GGM(2)				

Let G = (V, E) and $M^+(G)$ denote the cone of $|V| \times |V|$ positive definite matrices such that *ij* entry is equal to 0 whenever $(i, j) \notin E$. A GGM with graph G is

$$\mathcal{M}_{\mathcal{G}} = \left\{ \mathcal{N}(\mathbf{0}, \Sigma) | \ \Omega = \Sigma^{-1} \text{ and } \Omega \in M^{+}(\mathcal{G}) \right\}.$$

On the covariance space, incomplete matrices $\boldsymbol{\Sigma}^{\boldsymbol{E}}$ to handle : far from simple.

< 🗗 >

Framework	Estimation of GGM	Model comparison	Model search	Applications

Two challenging problems for covariance estimation in GGM

- graphical model selection problem
 = problem of estimating the zero-pattern of Ω,
- **2** covariance matrix estimation based on the model selected.

Framework	Estimation of GGM	Model comparison	Model search	Applications

Two challenging problems for covariance estimation in GGM

1 graphical model selection problem

= problem of estimating the zero-pattern of Ω ,

2 covariance matrix estimation based on the model selected.

in a Bayesian framework.

$$X|\Sigma \sim \mathcal{N}_{p}(\mathbf{0},\Sigma), \ \Omega = \Sigma^{-1} \in M^{+}(G)$$

Parameters : Ω , nuisance parameter, and G, parameter of interest.

- priors to handle : $\pi(\Omega, G) = \pi(\Omega|G)\pi(G)$,
- posterior to handle : $\pi(G|X) = \int \pi(\Omega, G|X) d\Omega$,
- estimator to choose : Ĝ.

Framework 00000000	Estimation of GGM ●00000000000	Model comparison 000	Model search 00000	Applications

With our real data

Example : focus on the 9 first variables.

Starting from the empirical covariance matrix, we seek to reduce problem complexity and find the underlying conditional-dependency structures.

Figure: $\mathbf{X}^{T}\mathbf{X}$ and the underlying structure.

Framework 00000000	Estimation of GGM	Model comparison	Model search 00000	Applications

Substantial problems

- Which priors, π(Σ|G) and π(G), for efficient model search? (explicit expression for prior in the decomposable case)
- Properness conditions for the posterior distribution? (easier to derive in the decomposable case)
- Which tool to model comparison? (depending on the choice of priors : proper or not)
- Which graphical model-selection procedure? (search computationally less expensive in the decomposable case)

Framework	Estimation of GGM	Model comparison	Model search	Applications	
	00 000 000000				
Decomposable or non-decomposable graphs?					

Decomposition

(A, B, C), subsets of V, form a *decomposition* of G if C is complete, *i.e* a set of pairwise adjacent vertices, and C is separator of A, B, *i.e* any path from A to B goes through C.

A sequence of subgraphs that cannot be decomposed further are the *prime components* of a graph; if every prime component is clique, the graph is *decomposable*.

Any given graph can G be embedded in a decomposable graph by adding edges, the decomposable graph is called a *triangulation* of G.

Framework 00000000	Estimation of GGM ○○○●○○○○○○○	Model comparison	Model search 00000	Applications
Decomposable or non-decomposable graphs ?				

Figure: Graph decomposition.

 $A = \{X_1, X_2, X_4, X_5\}$ is a prime component, $B = \{X_2, X_3, X_4\}$ is a clique and $C = \{X_2, X_4\}$ is a separator.

< 🗇 ►

Framework 000000000	Estimation of GGM	Model comparison	Model search 00000	Applications
Decomposable or non-decomposable graphs?				

Figure: Triangulated graph.

All the prime components are cliques.

< ₫ >

Framework	Estimation of GGM	Model comparison	Model search	Applications
	00 000 000000			
Decembership or non decembership graphs?				

Decomposable or non-decomposable graphs?

Although, in the literature, attention is often restricted to the decomposable case, only a small fraction of the total number of graphs on p nodes is decomposable.

Figure: Proportion of decomposable graphs depending on the number of vertices.

\implies Graphical model selection for general graphs.

< 17 >

Framework 00000000	Estimation of GGM	Model comparison 000	Model search 00000	Applications
Priors				

Standard prior for G

We choose to consider a Bernoulli distribution on the edge inclusion indicators with success probability β .

$$\pi({{{\mathbb{G}}}} ext{ with } k ext{ edges} | eta) \propto eta^k (1 - eta)^{m-k}$$

with $m = \frac{p(p-1)}{2}$, the maximum number of possible edges.

 $\beta = \frac{1}{p-1}$ will encourage sparse graphs.

Framework 00000000	Estimation of GGM	Model comparison	Model search 00000	Applications
Priors				

Standard prior for Ω in the literature (1)

As the GGM with graph G = (V, E) is a regular exponential family [Lau96] with canonical parameter Ω , the standard conjugate prior for Ω in $M^+(G)$ can be written as

$$\pi_{G}(\Omega|\delta, D^{E}) = \frac{1}{Z(G, \delta, D^{E})} |\Omega|^{(\delta-2)/2} \exp\left\{-\frac{1}{2} tr(\Omega D^{E})\right\}$$

where δ , D^E are such that the normalizing constant $Z(G, \delta, D^E)$ is finite.

Framework 000000000	Estimation of GGM	Model comparison	Model search 00000	Applications
Priors				

Standard prior for Ω (2)

$$\int_{\mathcal{M}^+(G)} |\Omega|^{(\delta-2)/2} \exp\left\{-\frac{1}{2}tr(\Omega D^E)\right\} d\Omega < \infty$$

if $\delta > 2$ and the incomplete matrix D^E admits a positive completion.

In this case, it is called *G*-Wishart distribution with parameters (δ, D^E) .

- In decomposable cases, $Z(G, \delta, D^E)$ available in a closed form,
- in non-decomposable cases, Z(G, δ, D^E) not available in a closed form.

< 行 →

Framework 00000000	Estimation of GGM	Model comparison 000	Model search 00000	Applications
Priors				

A new objective prior for Ω (1)

We propose to consider this noninformative prior for Ω of a GGM with arbitrary graph G:

$$\pi_N(\Omega|G) \propto |\Omega|^{-1}$$
 for $\Omega \in M^+(G)$.

- Choice motivation : the involved default-procedure for GGM selection yields efficient posterior seperation of models.
- A particular case : this distribution corresponds to the prior proposed by [CS07] for model selection when considering only the decomposable graphs.

Framework 000000000	Estimation of GGM ○○○○○○○○●○	Model comparison	Model search 00000	Applications
Posterior of G				

Proposition : The posterior density of G

$$\pi(G|\mathbf{X}) \propto \frac{\frac{1}{p-1}^{m} (p-2)^{m-k}}{\sqrt{2\pi}^{np}} Z(G, n, \mathbf{X}^{\mathsf{T}} \mathbf{X}) \text{ with } m = \frac{p(p-1)}{2}$$

is proper iff

$$Z(G, n, (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{\mathsf{E}}) = \int_{\mathcal{M}^{+}(G)} |\Omega|^{\frac{n-2}{2}} \exp\left\{-1/2tr(\Omega(\mathbf{X}^{\mathsf{T}}\mathbf{X})^{\mathsf{E}})\right\} d\Omega$$

is finite.

Sufficient conditions :

- *n* > 2
- (X^TX)^E has a positive completion : condition hard to find for general graphs.

< 17 >

Framework 000000000	Estimation of GGM ○○○○○○○○○●	Model comparison	Model search 00000	Applications
Posterior of G				

Proposition : Let $G^+ = (V, E^+)$ be a minimal triangulation of G - a decomposable graph where $E^+ \supset E$, with the property that removal of any edge in G^+ which is not an edge in G will not be decomposable.

Let C^+ denote the set of cliques of G^+ .

$$n > \max_{C \in \mathcal{C}^+} |C^+| \Rightarrow (\mathbf{X}^T \mathbf{X})^E$$
 has a positive completion.

Particular case : for the full graph, well-known condition.

Conclusion :

- $\pi(G|\mathbf{X})$ proper for all the graphs, when n > p.
- If $n \leq p$, restriction on the graphs under consideration. $\pi(G|\mathbf{X})$ proper for any graph in $\mathcal{S}_G = \{G | Z(G, n, (\mathbf{X}^T \mathbf{X})^E) < \infty\}.$

< 行 →

Framework 00000000	Estimation of GGM	Model comparison ●○○	Model search 00000	Applications
Bayes factors				

Structural learning in Gaussian graphical models usually involves assessing the posterior probability of the graphs to evaluate

$$\frac{\pi(G_1|\mathbf{X})}{\pi(G_2|\mathbf{X})} = \frac{\pi(G_1)}{\pi(G_2)}BF_{12}(\mathbf{X}),$$

where

$$BF_{12}(\mathbf{X}) = \frac{f(X|G_1)}{f(X|G_2)},$$

where $f(X|G_i) = \int_{M^+(G)} f(X|\Omega_i, G_i) \pi_i(\Omega|G_i) d\Omega_i$ is the marginal likelihood of G_i .

Bayesian model comparison is usually based on Bayes factors.

< 行 >

Framework 000000000	Estimation of GGM	Model comparison ○●○	Model search 00000	Applications	
Fractional Bayes factors					
D. C. L.					
Dotinitio	n				

Using improper priors for parameters in alternative models \Rightarrow Bayes factors not well defined :

$$BF_{12}(\mathbf{X}) = rac{c_1}{c_2} rac{f(X|G_1)}{f(X|G_2)}$$
 , with $rac{c_1}{c_2}$ unknown.

Alternative key : Fractional Bayes factors (FBF) introduced by [O'H95] among Partial Bayes factors (PBF) [Per05].

$$FBF_{12}(\mathbf{X}) = \frac{q(X|G_1,g)}{q(X|G_2,g)},$$

with $q(X|G,g) = \int_{M^+(G)} f(X|\Omega)^{1-g} \pi_g(\Omega|G, \mathbf{X}, g) d\Omega$, the fractional marginal likelihood of G.

Framework	Estimation of GGM	Model comparison	Model search	Applications
		000		
Fractional Bayes factors				

Graph score based on Laplace approximations

$$q(X|G,g) = \frac{1}{\sqrt{2\pi}^{np}} \frac{Z(G, n, \mathbf{X}^{\mathsf{T}}\mathbf{X})}{Z(G, gn, g\mathbf{X}^{\mathsf{T}}\mathbf{X})} \text{ for } ng > 2.$$

We use the diagonal Laplace approximation proposed by [LD10] to estimate Z(G,..,.) for any graph G.

< 行 →

Framework 000000000	Estimation of GGM	Model comparison	Model search ●೦೦೦೦	Applications

A challenging issue

- *p* nodes in a graph ⇒ m = p(p-1)/2 possible edges
 ⇒ 2^m possible graphs.
 Beyond p = 7, enumeration becomes a practical impossibility.
- Need to scalable search methodologies that are capable of finding good models, or at least distinguishing the important edges from the irrelevant ones.
- Main classes of graphical model-selection procedures : compositional methods and direct search.

 \implies Framework proposed by [BMM09] which is a direct search method initialized with a set of graphs issued from a compositional method.

28/35

Framework 00000000	Estimation of GGM	Model comparison	Model search ○●○○○	Applications
Stochastic Local Search				

An heuristic search technique

An iterative algorithm which tries to identify the most likely graphs, inspired by [SC08].

At time t, starting with

- t-1 distinct explored graphs $(G_1, ..., G_{t-1})$,
- t-1 scores $q(X|G_1,g), ..., q(X|G_{t-1},g)$
- estimated edge-inclusion probabilites $Pr(\omega_{ij} \neq 0 | G_1, ..., G_{t-1})$, i, j = 1, ..., p,

3 steps :

- **1** perform a stochastic local update to the graph based on edge-inclusion probabilities \Rightarrow new graph G_t ,
- **2** score the graph $\Rightarrow q(X|G_t,g)$,

3 update the edge-inclusion probabilities $\Rightarrow Pr(\omega_{ij} \neq 0 | G_1, ..., G_t)$.

< 17 >

Framework	Estimation of GGM	Model comparison	Model search	Applications
			00000	
Stochastic Local Search				

Local update via 2 kinds of moves :

- local moves : choose randomly to add or delete an edge.
 If add, do so in proportion to their estimated edge-inclusion probabilites. If delete, do so in inverse proportion to them,
- resampling step : revisite one of $(G_1, ..., G_{t-1})$ in proportion to their score and make local move from the resampled graph.

Before SLS, good to initialize the search with a set of promising graphs for resampling.

Framework	Estimation of GGM	Model comparison	Model search	Applications
			00000	
Neighborhood Fusio	ı			

Initialization strategy using Neighborhood Fusion

- Neighborhood Fusion (NF) to quickly produce large sets of high quality GGM structures.
- In the space of conditional regressions,
 - it exploits the sparse linear regression method LASSO through LARS algorithm [Tib96] to compute a set of candidate neighborhood structures for each variable,
 - 2 it specifies a mechanism for sampling and
 - 3 a mechanism for combining these neighborhoods to form undirected graphs.

Framework 00000000	Estimation of GGM	Model comparison 000	Model search ○○○○●	Applications

Model choice

We consider

- the graph with the highest score among those explored,
- the median probability model G_{med} :

$$G_{med} = (V, E_{med}),$$

where $E_{med} = \{(i, j) : Pr(\omega_{ij} \neq 0 | G_1, ..., G_T) \ge 0.5\},$

Choose it if its score is bigger and if it was not explored.

< 17 >

Framework	Estimation of GGM	Model comparison	Model search	Applications
				000

Portfolio : 27 energy products, called futures contracts, on the UK energy market.

Futures : contracts between two parties to exchange a specified commodity of standardized quantity and quality for a price agreed today with delivery occurring at a specified future date, the delivery date. Here 27 futures :

- 9 of different delivery periods on the Electricity market (1Month AHead-2MAH-3MAH-1Quarter AHead-2QAH-1Season AHead-2SAH-3SAH-4SAH),
- 18 of different delivery periods on the Gaz market (1MAH-2MAH-3MAH-4MAH-5MAH-6MAH-7MAH-8MAH-9MAH-10MAH-11MAH-12MAH-13MAH-14MAH-15MAH-16MAH-17MAH-18MAH).

To understand futures... :

< (P) >

Framework	Estimation of GGM	Model comparison	Model search	Applications		
				000		

We apply our proposed model-selection procedure from 200 price returns in dimension 27. All the graphs are considered.

Result : matrix where element ij = 1 if (i, j) is an edge of the selected graph.

	1MAH	2MAH	3MAH	10AH	20AH	1SAH	2SAH	3SAH 4SAH	1 1MAH	2MAH	3MAH	4MAH	5MAH	6MAH	7MAH	8MAH	9MAH	10MAH	11MAH	12MAH	13MAH	14MAH	15MAH	16MAH	17MAH 18M	JAH .
1MAH	0	1	1	1 1	0	1	0	0	1 1	1	0	1	0	1	0	1	1	0	1	1	0	0	0	0	0	D
2MAH	1	0	1 1	1 0	0	0	0	0 1	0 1	1	0	1	1	1	0	1	1	1	0	1 1	0	0	1	1	1	1
3MAH	1	1	0	0 1	1	0	1	0 1	0 1	0	1	0	0	1 1	0	0	0	0	1	0	1	0	0	0	0	1
10AH	1	0	1	1 0	1	1	1	1 1	0 0	D	0	0	1 0	1 0	0 0	D	1	1	0	0	0	0	0	1	0	1
20AH	0	0	1	1 1	0	i 1	0	1 1	0 0	0	0	0	1 0	1 1	1	1	0	1	1	0	0	0	1	1	1	0
1SAH	1	0	0	3 1	1	0	1	1	1 0	0	1	0	1 1	0	0 0	1	0	0	1	1	0	0	0	0	0	1
2SAH	0	0	1	1 1	0	1	0	1	1 0	1	1	1	0	1 1	0	D	1	1	0	0	0	1	0	0	0	D
3SAH	0	0	0	D 1	1	1	1	0	1 0	0	0	0	1 1	1	0	0	0	1	0	0	0	0	1	1	1	1
4SAH	1	0	0	0 0	0	1	1	1 1	0 1	0	0	1	0	1 0	0 0	1	0	0	1	0	0	0	1	0	0	1
1MAH	1	1	1	0	0	0	0	0	1 0	1	0	1	1	0	0 0	0	1	1	1	1	1	0	0	1	0	1
2MAH	1	1	0	3 0	0	0	1	0 1	0 1	0	1	1	1	1	1	D	1	1	1	0	1	0	1	0	1	D
3MAH	0	0	1	0	0	1	1	0 1	D O	1	0	1	0	1 1	1	0	1	1	1	1	1	0	0	0	1	1
4MAH	1	1	6	0 0	0	0	1	0	1 1	1	1	0	1 1	1	1	0	0	0	0	1 1	1	0	1	1	1	D
5MAH	0	1	0	0 0	0	1	0	1 1	0 1	1	0	1	0	1 1	0	1	1	0	1	1	1	1	0	1	1	1
6MAH	1	1	1	1 0	1	0	1	1 1	0 0	1	1	1	1	0	1 1	0	1	0	1	0	1	0	0	1	1	1
7MAH	0	0	6	3 0	1	0	0	0 1	0 0	1	1	1	0	1 1	0	1	1	1	1	1	1	0	0	1	1	1
8MAH	1	1	0	0 0	1	1	0	0	1 0	0	0	0	1 1	0	1	0	1	1	1	1	0	0	1	0	0	0
9MAH	1	1	0	0 1	0	0	1	0 1	0 1	1	1	0	1 1	1	1	1	0	1	1	0	1	1	0	0	1	1
10MAH	0	1	6	3 1	1	0	1	1 1	0 1	1	1	0	1 0	1 0	1 1	1	1	0	1	1	1	0	1	D	0	1
11MAH	1	0	1	1 0	1	1	0	0	1 1	1	1	0	1 1	1	1	1	1	1	0	1 1	1	0	1	0	1	1
12MAH	1	1	0	3 0	0	1	0	0 1	0 1	0	1	1	1	0	1 1	1	0	1	1	0	0	1	0	1	0	1
13MAH	0	0	1	0	0	0	0	0 1	0 1	1	1	1	1	1	1	D	1	1	1	0	0	1	1	1	1	1
14MAH	0	0	0	0 0	0	0	1	0 1	0 0	0	0	0	1 1	0	0 0	0	1	0	0	1 1	1	0	1	1	1	1
15MAH	0	1	6	3 0	1	0	0	1	1 0	1	0	1	0	1 0	0 0	1	0	1	1	0	1	1	0	1	0	1
16MAH	0	1	0	0 1	1	0	0	1 1	0 1	0	0	1	1	1	1	0	0	0	0	1	1	1	1	0	1	1
17MAH	0	1	0	0 0	1	0	0	1 1	0 0	1	1	1	1	1	1	0	1	0	1	0	1	1	0	1	0	1
18MAH	0	1	1	1 1	0	1	0	1	1 1	D	1	0	1	1	1	D	1	1	1	1	1	1	1	1	1	D

Figure: An idea of conditional-independence relationships between asset returns

< 一型 >

Framework 000000000	Estimation of GGM	Model comparison 000	Model search 00000	Applications ○○●

- GGM : tractable model for covariance matrices in many dimensions and/or small samples + knowledge discovery.
- Study problem : estimation of the graph structure associated to a GGM.
- Main contributions : complete methodology to perform objective Bayesian model selection in general GGM - new objective matrix prior, properness condition for posterior, tools for model comparison and exploration of large model space.
- Perspective : estimation of the associated covariance matrix.

Accelerating bayesian structural inference for non-decomposable gaussian graphical models.

NIPS, 2009.

C.M. Carvalho and J.G. Scott.

Objective bayesian model selection in gaussian graphical models. *Biometrika*, 96(3) :497–512, 2007.

Graphical Models.

Oxford University Press, 1996.

A. Lenkoski and A. Dobra.

Bayesian structural learning and estimation in gaussian graphical models.

(545) :1-18, 2010.

< 17 >

Framework 000000000	Estimation of GGM	Model comparison 000	Model search 00000	Applications ○○●						
	A. O'Hagan.									
	Fractional bayes factors for model comparison.									
	57(1) :99–138, 1995.									
	L.R. Perrichi.									
	Model selection and hyp	othesis testing bas	ed on objective							

probabilities and bayes factors.

25 :*Bayesian Thinking Modeling and Computation*(D. K. Dey and C. R. Rao, eds.) 115Ū149. North–Holland, New York, 2005.

J.G. Scott and C.M. Carvalho.

Feature-inclusion stochastic search for gaussian graphical models.

Journal of computational and graphical statistics, 17(4) :790–808, 2008.

🔋 R. Tibshirani.

Regression shrinkage and selection via the lasso.

58(1):267-288, 1996.

< 17 >