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Application context

Market-risk assessment for high-dimensional asset portfolio.

• Portfolio variation Vt,t+h between t and t + h affected by risk
factors, specifically by price returns X of portfolio products.

• A widely used risk measure : Value-at-risk.
VaR1−α at a risk level α over a given time horizon h
= the α-quantile of the portfolio variation between t and t + h.

Pr(Vt,t+h < VaR1−α) = α%.
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VaR Computation

• Method = the analytic VaR, built on 2 assumptions :

1 portfolio variation as a linear combination of product
returns, Vt,t+h = aTXt,t+h,

2 normal distribution assumptions about returns,
Xt,t+1|Σ ∼ Np(0,Σ).

⇒ VaR1−α =
√
h
√
aT ΣaΦ−1(α), calculated from Σ̂,

with Φ−1(α) the α-quantile of the standard normal distribution.

• Problem : sensitivity of VaR results to variations of Σ̂ + unstable
matrix estimator, as with a small sample.

↪→ Requirement : stable covariance matrix between returns.
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Data

• Portfolio made of 27 energy products.

• The covariance matrix for the returns X on the products in the
portfolio to estimate, i.e 378 elements to estimate.

• Matrix to estimate from 200 observations.
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Problem formalization

X |Σ ∼ Np(0,Σ),

where Σ is a p × p symmetric positive-definite matrix.

Problem : Estimation of Σ from a sample of X , X=(X1, ...,Xn)
where p is close to n.

Classical estimator based on the scatter matrix Sn = XTX :
inappropriate.

• unstable estimator

• distortion of the eigenstructure

• Sn no longer positive definite if p ≥ n.
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Alternatives

General approaches to induce stability over the unstructured classical
estimator of the covariance matrix :

• by shrinking of eigenvalues,

• by shrinking this estimate toward a parsimonious, structured form
of the matrix,

• by imposing various restrictions on the model and then estimating
covariance matrix related to these structural assumptions.
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Alternatives

General approaches to induce stability over the unstructured classical
estimator of the covariance matrix :

• by shrinking of eigenvalues,

• by shrinking this estimate toward a parsimonious, structured form
of the matrix,

• by imposing various restrictions on the model and then estimating
covariance matrix related to these structural assumptions.

Bayesian inference on covariance matrices
in Gaussian Graphical models

⇒ Visual aid - interpretation / Aid in parameter estimation
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Background

Graph theory

An undirected graph is a pair G = (V ,E ) with vertex set V and edge
set E = {(i , j)} for some pairs (i , j) ∈ V .

A clique C of G is a set of pairwise adjacent vertices.

Figure: Graph G with 5 nodes and 6 edges.
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Background

Matrix theory

Let Σ be a matrix, the G-incomplete symmetric matrix ΣE is defined
as an incomplete symmetric matrix indexed by V × V , in which the
elements are those of Σij for all (i , j) ∈ E , and with the remaining
elements unspecified.

ΣE =


σ11 σ12 ∗ ∗ σ15
σ21 σ22 σ23 σ14 ∗
∗ σ32 σ33 σ34 ∗
∗ σ42 σ43 σ44 σ45
σ51 ∗ ∗ σ54 σ55


A completion of an incomplete matrix is a specific choice of values for

the unspecified entries.
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Background

Gaussian graphical model GGM (1)

A GGM uses a graphical structure to define a set of pairwise
conditional independence relationships.

• With precision matrix Ω = Σ−1, Xi and Xj of X are conditionally
independent (given the neighboring variables of each) iff ωij = 0.

• If G = (V ,E ) is an undirected graph whose vertices are
associated with X , (|V | = p), ωij = 0 for all pairs (i , j) /∈ E .

Ω =


ω11 ω12 0 0 ω15
ω21 ω22 ω23 ω14 0
0 ω32 ω33 ω34 0
0 ω42 ω43 ω44 ω45
ω51 0 0 ω54 ω55

⇔ X1⊥X3|X2,X4,X5 ...
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Background

GGM (2)

Let G = (V ,E ) and M+(G ) denote the cone of |V | × |V | positive
definite matrices such that ij entry is equal to 0 whenever (i , j) /∈ E .

A GGM with graph G is

MG =
{
N (0,Σ)| Ω = Σ−1 and Ω ∈ M+(G )

}
.

On the covariance space, incomplete matrices ΣE to handle : far from
simple.
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Two challenging problems for covariance estimation in GGM

1 graphical model selection problem
= problem of estimating the zero-pattern of Ω,

2 covariance matrix estimation based on the model selected.
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Two challenging problems for covariance estimation in GGM

1 graphical model selection problem
= problem of estimating the zero-pattern of Ω,

2 covariance matrix estimation based on the model selected.

in a Bayesian framework.

X |Σ ∼ Np(0,Σ), Ω = Σ−1 ∈ M+(G )

Parameters : Ω, nuisance parameter, and G , parameter of interest.

• priors to handle : π(Ω,G ) = π(Ω|G )π(G ),

• posterior to handle : π(G |X ) =
∫
π(Ω,G |X )dΩ,

• estimator to choose : Ĝ .
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With our real data

Example : focus on the 9 first variables.
Starting from the empirical covariance matrix, we seek to reduce
problem complexity and find the underlying conditional-dependency
structures.

Figure: XTX and the underlying structure.
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Substantial problems

• Which priors, π(Σ|G ) and π(G ), for efficient model search ?
(explicit expression for prior in the decomposable case)

• Properness conditions for the posterior distribution ? (easier to
derive in the decomposable case)

• Which tool to model comparison ? (depending on the choice of
priors : proper or not)

• Which graphical model-selection procedure ? (search
computationally less expensive in the decomposable case)
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Decomposable or non-decomposable graphs ?

Decomposition

(A,B,C ), subsets of V , form a decomposition of G if C is complete,
i.e a set of pairwise adjacent vertices, and C is separator of A,B, i.e
any path from A to B goes through C .

A sequence of subgraphs that cannot be decomposed further are the
prime components of a graph ; if every prime component is clique, the
graph is decomposable.

Any given graph can G be embedded in a decomposable graph by
adding edges, the decomposable graph is called a triangulation of G .
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Decomposable or non-decomposable graphs ?

Figure: Graph decomposition.

A = {X1,X2,X4,X5} is a prime component, B = {X2,X3,X4} is a
clique and C = {X2,X4} is a separator.
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Decomposable or non-decomposable graphs ?

Figure: Triangulated graph.

All the prime components are cliques.
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Decomposable or non-decomposable graphs ?

Although, in the literature, attention is often restricted to the
decomposable case, only a small fraction of the total number of graphs
on p nodes is decomposable.

Figure: Proportion of decomposable graphs depending on the number of
vertices.

=⇒ Graphical model selection for general graphs.
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Priors

Standard prior for G

We choose to consider a Bernoulli distribution on the edge inclusion
indicators with success probability β.

π(G with k edges|β) ∝ βk(1− β)m−k

with m = p(p−1)
2 , the maximum number of possible edges.

β = 1
p−1 will encourage sparse graphs.
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Priors

Standard prior for Ω in the literature (1)

As the GGM with graph G = (V ,E ) is a regular exponential family
[Lau96] with canonical parameter Ω, the standard conjugate prior for
Ω in M+(G ) can be written as

πG (Ω|δ,DE ) =
1

Z (G , δ,DE )
|Ω|(δ−2)/2 exp

{
−1
2
tr(ΩDE )

}
where δ,DE are such that the normalizing constant Z (G , δ,DE ) is
finite.
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Priors

Standard prior for Ω (2)

∫
M+(G)

|Ω|(δ−2)/2 exp
{
−1
2
tr(ΩDE )

}
dΩ <∞

if δ > 2 and the incomplete matrix DE admits a positive completion.

In this case, it is called G -Wishart distribution with parameters
(δ,DE ).

• In decomposable cases, Z (G , δ,DE ) available in a closed form,

• in non-decomposable cases, Z (G , δ,DE ) not available in a closed
form.
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Priors

A new objective prior for Ω (1)

We propose to consider this noninformative prior for Ω of a GGM with
arbitrary graph G :

πN(Ω|G ) ∝ |Ω|−1 for Ω ∈ M+(G ).

• Choice motivation : the involved default-procedure for GGM
selection yields efficient posterior seperation of models.

• A particular case : this distribution corresponds to the prior
proposed by [CS07] for model selection when considering only the
decomposable graphs.
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Posterior of G

Proposition : The posterior density of G

π(G |X) ∝
1

p−1
m

(p − 2)m−k

√
2π

np Z (G , n,XTX) with m =
p(p − 1)

2

is proper iff

Z (G , n, (XTX)E ) =
∫
M+(G)

|Ω| n−2
2 exp

{
−1/2tr(Ω(XTX)E )

}
dΩ

is finite.

Sufficient conditions :

• n > 2

• (XTX)E has a positive completion : condition hard to find for
general graphs.
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Posterior of G

Proposition : Let G+ = (V ,E+) be a minimal triangulation of G - a
decomposable graph where E+ ⊃ E , with the property that removal of
any edge in G+ which is not an edge in G will not be decomposable.

Let C+ denote the set of cliques of G+.

n > max
C∈C+

|C+| ⇒ (XTX)E has a positive completion.

Particular case : for the full graph, well-known condition.

Conclusion :

• π(G |X) proper for all the graphs, when n > p.

• If n ≤ p, restriction on the graphs under consideration. π(G |X)
proper for any graph in SG =

{
G | Z (G , n, (XTX)E ) <∞

}
.
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Bayes factors

Structural learning in Gaussian graphical models usually involves
assessing the posterior probability of the graphs to evaluate

π(G1|X)

π(G2|X)
=
π(G1)

π(G2)
BF12(X),

where

BF12(X) =
f (X |G1)

f (X |G2)
,

where f (X |Gi ) =
∫
M+(G)

f (X |Ωi ,Gi )πi (Ω|Gi )dΩi is the marginal
likelihood of Gi .

Bayesian model comparison is usually based on Bayes factors.
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Fractional Bayes factors

Definition

Using improper priors for parameters in alternative models ⇒ Bayes
factors not well defined :

BF12(X) =
c1
c2

f (X |G1)

f (X |G2)
, with

c1
c2

unknown.

Alternative key : Fractional Bayes factors (FBF) introduced by

[O’H95] among Partial Bayes factors (PBF) [Per05].

FBF12(X) =
q(X |G1, g)

q(X |G2, g)
,

with q(X |G , g) =
∫
M+(G)

f (X |Ω)1−gπg (Ω|G ,X, g)dΩ, the fractional
marginal likelihood of G .
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Fractional Bayes factors

Graph score based on Laplace approximations

q(X |G , g) =
1

√
2π

np
Z (G , n,XTX)

Z (G , gn, gXTX)
for ng > 2.

We use the diagonal Laplace approximation proposed by [LD10] to
estimate Z (G , ., .) for any graph G .
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A challenging issue

• p nodes in a graph ⇒ m = p(p−1)
2 possible edges

⇒ 2m possible graphs.
Beyond p = 7, enumeration becomes a practical impossibility.

• Need to scalable search methodologies that are capable of finding
good models, or at least distinguishing the important edges from
the irrelevant ones.

• Main classes of graphical model-selection procedures :
compositional methods and direct search.

=⇒ Framework proposed by [BMM09] which is a direct search method
initialized with a set of graphs issued from a compositional method.
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Stochastic Local Search

An heuristic search technique

An iterative algorithm which tries to identify the most likely graphs,
inspired by [SC08].

At time t, starting with

• t − 1 distinct explored graphs (G1, ...,Gt−1),

• t − 1 scores q(X |G1, g), ..., q(X |Gt−1, g)

• estimated edge-inclusion probabilites Pr(ωij 6= 0|G1, ...,Gt−1),
i , j = 1, ..., p,

3 steps :

1 perform a stochastic local update to the graph based on
edge-inclusion probabilities ⇒ new graph Gt ,

2 score the graph ⇒ q(X |Gt , g),

3 update the edge-inclusion probabilities ⇒ Pr(ωij 6= 0|G1, ...,Gt).
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Stochastic Local Search

Local update via 2 kinds of moves :

• local moves : choose randomly to add or delete an edge.
If add, do so in proportion to their estimated edge-inclusion
probabilites. If delete, do so in inverse proportion to them,

• resampling step : revisite one of (G1, ...,Gt−1) in proportion to
their score and make local move from the resampled graph.

Before SLS, good to initialize the search with a set of promising
graphs for resampling.
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Neighborhood Fusion

Initialization strategy using Neighborhood Fusion

• Neighborhood Fusion (NF) to quickly produce large sets of high
quality GGM structures.

• In the space of conditional regressions,

1 it exploits the sparse linear regression method LASSO
through LARS algorithm [Tib96] to compute a set of
candidate neighborhood structures for each variable,

2 it specifies a mechanism for sampling and

3 a mechanism for combining these neighborhoods to form
undirected graphs.
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Model choice

We consider

• the graph with the highest score among those explored,

• the median probability model Gmed :

Gmed = (V ,Emed),

where Emed = {(i , j) : Pr (ωij 6= 0|G1, ...,GT ) ≥ 0.5},

Choose it if its score is bigger and if it was not explored.
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Portfolio : 27 energy products, called futures contracts, on the UK
energy market.

Futures : contracts between two parties to exchange a specified commodity
of standardized quantity and quality for a price agreed today with delivery
occurring at a specified future date, the delivery date.
Here 27 futures :

• 9 of different delivery periods on the Electricity market (1Month

AHead-2MAH-3MAH-1Quarter AHead-2QAH-1Season AHead-2SAH-3SAH-4SAH),

• 18 of different delivery periods on the Gaz market
(1MAH-2MAH-3MAH-4MAH-5MAH-6MAH-7MAH-8MAH-9MAH-10MAH-11MAH-12MAH-

13MAH-14MAH-15MAH-16MAH-17MAH-18MAH).

To understand futures... :
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We apply our proposed model-selection procedure from 200 price
returns in dimension 27. All the graphs are considered.

Result : matrix where element ij =1 if (i , j) is an edge of the selected
graph.

Figure: An idea of conditional-independence relationships between asset
returns
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• GGM : tractable model for covariance matrices in many
dimensions and/or small samples + knowledge discovery.

• Study problem : estimation of the graph structure associated to a
GGM.

• Main contributions : complete methodology to perform objective
Bayesian model selection in general GGM - new objective matrix
prior, properness condition for posterior, tools for model
comparison and exploration of large model space.

• Perspective : estimation of the associated covariance matrix.
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