Extrêmes multivariés: estimation de la dépendance par mélange de Dirichlet

Anne Sabourin

Institut Camille Jordan, Lyon 1,
Laboratoire des Sciences du Climat et de l'Environnement.
Directeurs de thèse: Anne-Laure Fougères (Lyon 1), Philippe Naveau (LSCE).

Applibugs, 26 Juin 2012

Objectif : modéliser la dépendance entre événements rares.

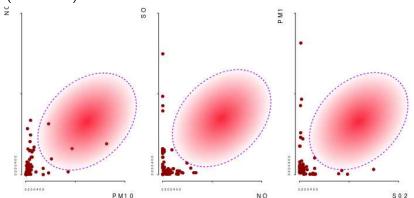
- Valeurs extrêmes multivariées : c.f De Haan, Resnick (70's, 80's).
- Inférence : problème ouvert, non paramétrique.

- "Dirichlet Mixture model" : semi-paramétrique. Boldi, Davison, 2007
 - Problème : Contraintes ⇒ Inférence bayésienne compliquée.
 - *Idée* : Changer la paramétrisation.

Qualité de l'air, Leeds, UK

Cooley et al., 2010, Boldi and Davison, 2007, Heffernan and Tawn, 2004.

- Données de concentration atmosphérique pour 5 polluants :
 03, N02, PM10 (poussières fines), NO, SO2.
- Maximum journalier sur cinq saisons : 100 plus grandes observations (sur $\simeq 500$)



Plan

- Extrêmes multivariés
- 2 Modèle contraint de mélange de Dirichlet : Boldi, Davison
- 3 Modèle reparamétré : sans contraintes
- 4 Résultats : dimension 3 et 5
- Conclusion

Plan

- Extrêmes multivariés
- 2 Modèle contraint de mélange de Dirichlet : Boldi, Davisor
- 3 Modèle reparamétré : sans contraintes
- A Résultats : dimension 3 et 5
- Conclusion

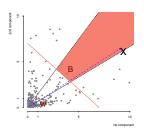
Extrêmes multivariés : décomposition polaire

$$\mathbf{X}=(X_1,X_2)\;;\quad \mathbf{P}(X_i\leq x)=e^{rac{-1}{x}}\;.$$
 $R=X_1+X_2$: 'rayon', $\mathbf{W}=rac{\mathbf{X}}{R}$: 'angle' = point du simplexe \mathbf{S}_2 .

$$\mathbf{W} \in \mathbf{S}_2 = \{(w_1, w_2) : w_1 + w_2 = 1, w_i \geq 0\}.$$

Loi jointe des extrêmes :

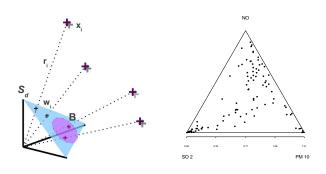
$$P(W \in B, R > r)$$
?



Extrêmes multivariés : décomposition polaire

- Dimension 3 : $X = (X_1, X_2, X_3)$
- $\mathbf{W} = (w_1, w_2, w_3)$: point dans un triangle:

le simplexe
$$S_3 = \{ \mathbf{w} = (w_1, w_2, w_3) : \sum_{i=1}^3 w_i = 1, w_i \ge 0 \}.$$



Extrêmes multivariés : décomposition polaire

Résultat fondamental (de Haan, Resnick) :

$$P(W \in B, R > r) \underset{r \to \infty}{\sim} \frac{1}{r} H(B)$$

La loi limite des angles H = 'mesure spectrale' = 'mesure angulaire' détermine la loi jointe des grandes observations.

Seule contrainte sur H :

$$\forall i \in \{1, \dots, d\}, \ \int_{\mathbf{S}_d} w_i \, \mathrm{d}H(\mathbf{w}) = \frac{1}{d}. \tag{1}$$

Centre de gravité de H = centre du simplexe.

• Ensemble des H's admissibles : famille non paramétrique.

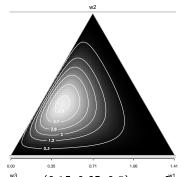
Plan

- Extrêmes multivariés
- 2 Modèle contraint de mélange de Dirichlet : Boldi, Davison
- 3 Modèle reparamétré : sans contraintes
- A Résultats : dimension 3 et 5
- Conclusion

Loi de Dirichlet

$$\forall \mathbf{w} \in \overset{\circ}{\mathbf{S}}_d$$
, $\operatorname{diri}(\mathbf{w} \mid \boldsymbol{\mu}, \nu) = \frac{\Gamma(\nu)}{\prod_{i=1}^d \Gamma(\nu \mu_i)} \prod_{i=1}^d w_i^{\nu \mu_i - 1}$.

- $oldsymbol{\phi} \mu \in \mathring{\mathsf{S}}_d$: paramètre (vecteur) de localisation : 'centre'.
- ullet u>0: paramètre de concentration.

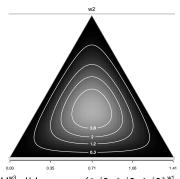


ex $\ddot{\mu} = (0.15, 0.35, 0.5), \ \nu = 9^{\'}$

Loi de Dirichlet

$$\forall \mathbf{w} \in \overset{\circ}{\mathbf{S}}_d$$
, $\operatorname{diri}(\mathbf{w} \mid \boldsymbol{\mu}, \nu) = \frac{\Gamma(\nu)}{\prod_{i=1}^d \Gamma(\nu \mu_i)} \prod_{i=1}^d w_i^{\nu \mu_i - 1}$.

- $oldsymbol{\phi} \mu \in \mathring{\mathsf{S}}_d$: paramètre (vecteur) de localisation : 'centre'.
- ullet u > 0: paramètre de concentration.



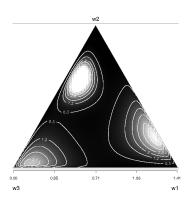
 H^{ws} alide : $\mu = (1/3, 1/3, 1/3)^{\text{ws}}$

Mélange de k lois de Dirichlet

• $\mu = \mu_{\cdot,1:k}, \ \nu = \nu_{1:k}, \ \mathbf{p} = p_{1:k}$

$$h_{(\boldsymbol{\mu},\mathbf{p},\boldsymbol{
u})}(\mathbf{w}) = \sum_{m=1}^{K} \rho_m \operatorname{diri}(\mathbf{w} \mid \boldsymbol{\mu}_{+,m}, \nu_m)$$

• Contrainte de moments sur (μ, p) : $\sum_{m=1}^k p_m \mu_{.,m} = (\frac{1}{d}, \dots, \frac{1}{d})$.



Modèle Bayésien sous contraintes

Espace des paramètres : union disjointe $\Theta = \coprod_{k=1}^{\infty} \Theta_k$. Chaque espace des paramètres Θ_k est contraint :

$$\Theta_k = \{ \theta = (\mu_{.,1:k}, p_{1:k}, \nu_{1:k}) : \sum_{m=1}^k p_m \mu_{.,m} = (\frac{1}{d}, \dots, \frac{1}{d}) \}.$$

Inférence bayésienne :

- prior $\pi(\theta)$
 - Posterior : $\pi_n(\theta) \hat{=} \pi(\theta|\mathbf{w}_{1:n})$ connu à une constante multiplicative près.
- ullet π_n estimée par échantillonnage : Metropolis Hastings, sauts réversibles.

Deux problèmes dûs aux contraintes

$$\Theta_k = ext{espace contraint}
eq ext{pav\'e de } \mathbb{R}^n \,! \,!$$

- Comment définit un prior π sur Θ_k ?
- Echantillonnage MCMC : Comment générer des propositions "raisonnables" ?

Boldi, Davison: Tentative

• Prior sur Θ_k :

$$\pi(\theta) = \pi_{\nu}(\nu)\pi_{p}(\mathbf{p})\pi_{\mu}(\mu \mid \mathbf{p}),$$

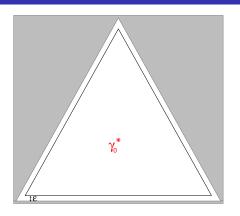
avec

$$\pi_{\mu}(\boldsymbol{\mu} \mid \mathbf{p}) = \prod_{i \leq d, j \leq k} \pi_{i,j}(\boldsymbol{\mu}_{i,j} \mid \mathbf{p}, \{\boldsymbol{\mu}_{k,l}, (k,l) < (i,j)\})$$

- \Rightarrow Prior asymétrique (stick breaking) \Rightarrow concentration de la masse a priori dans un "coin" du simplexe.
- propositions MCMC : par fusion/division de paires de noyaux.
 - ⇒ Taux d'acceptation de l'échantilloneur très faible.
- \Rightarrow Pas d'inférence bayésienne en dimension > 3.

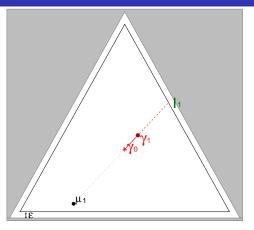
Plan

- Extrêmes multivariés
- 2 Modèle contraint de mélange de Dirichlet : Boldi, Davison
- Modèle reparamétré : sans contraintes
- A Résultats : dimension 3 et 5
- Conclusion

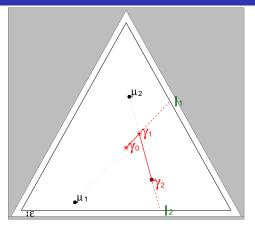


 $oldsymbol{\gamma}_m$: barycentre des "noyaux après $oldsymbol{\mu}_{.,m}$ " : $oldsymbol{\mu}_{.,m+1},\ldots,oldsymbol{\mu}_{.,k}.$

$$\gamma_m = \sum_{i>m} \frac{p_j}{1 - \sum_1^m p_i} \, \mu_{..j}$$

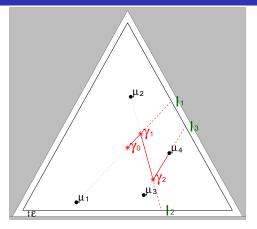


$$egin{align} oldsymbol{\mu}_{.,1}, \; e_1 & \Rightarrow oldsymbol{\gamma}_1 : rac{\overline{\gamma_0 \; \gamma_1}}{\overline{\gamma_0 \; l_1}} = e_1 \; ; \ & \Rightarrow oldsymbol{
ho}_1 \ \end{aligned}$$



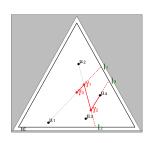
$$\mu_{.,2}, e_2 \Rightarrow \gamma_2 : \frac{\overline{\gamma_1 \gamma_2}}{\overline{\gamma_1 l_2}} = e_2 ;$$

 $\Rightarrow p_2$



$$\mu_{.,3}, e_3 \quad \Rightarrow \gamma_3 : \frac{\overline{\gamma_2 \gamma_3}}{\overline{\gamma_2 I_3}} = e_3 ; \quad \mu_{.,4} = \gamma_3.$$

 $\Rightarrow p_3, p_4$



• On s'est donné

$$(\mu_{.,1:k-1},e_{1:k-1}))$$
;

On en déduit

$$(\mu_{.,1:k}, p_{1:k}).$$

• On peut paramétrer la densité h par

$$\boldsymbol{\theta} = (\boldsymbol{\mu}_{.,1:k-1}, \mathbf{e}_{1:k-1}, \boldsymbol{\nu}_{1:k})$$

Modèle bayésien

Espace des paramètres non contraint (union d'espaces produit) :

$$\Theta = \coprod_{k=1}^{\infty} \Theta_k; \quad \Theta_k = \left\{ (\mathbf{S}_d)^{k-1} \times [0,1)^{k-1} \times (0,\infty]^{k-1} \right\}$$

 $oldsymbol{eta}$ Inférence sur k, $oldsymbol{ heta}_k = ig(oldsymbol{\mu}_{1:k-1}, e_{1:k-1},
u_{1:k}ig)$

• Restriction (compacité) : $k \leq 15$, $\nu < \nu_{\mathsf{max}}$, etc ...

Modèle bayésien

Prior :

$$k \sim$$
 Géométrique tronquée $m{\mu}_{.,m} | (m{\mu}_{.,1:m-1}, e_{1:m-1}) \sim ext{Dirichlet}$ $e_m | (m{\mu}_{.,1:m}, e_{1:m-1}) \sim ext{Beta}$ $u_m \sim ext{logN}$

• Echantillonnage du posterior : par MCMC (sauts réversibles).

• Principe de l'algo : proposer μ_m^* dans des régions à forte vraisemblance i.e. : près des données.

Echantillonnage: Metropolis-within-Gibbs, reversible jumps.

Trois types de propositions :

• Classique : un $\mu_{..m}$, e_m ou un ν_m est modifié. (Gibbs)

$$oldsymbol{\mu}_{.,m}^* \sim \sum_{j=1}^n p(\mathbf{w}_j) \operatorname{diri}(\,\cdot\,|\mathbf{w}_j,
u(\mathbf{w}_j))$$

• Trans-dimensionnelle : Un composant $(\mu_{.,k},e_k,\nu_{k+1})$ est rajouté ou supprimé. (Green, 1995)

• "Shuffle": Permutation (évite la division des derniers poids par stick-breaking).

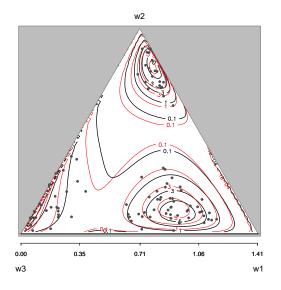
Plan

- Extrêmes multivariés
- 2 Modèle contraint de mélange de Dirichlet : Boldi, Davisor
- Modèle reparamétré : sans contraintes
- 4 Résultats : dimension 3 et 5
- Conclusion

En dimension 3

Données simulées.

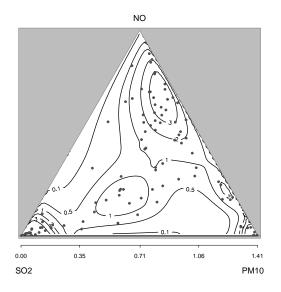
 $\mbox{MCMC}: \mbox{$T_2$} = 50 \ 10^3; \ \mbox{$T_1$} = 25 \ 10^3. \label{eq:mcmc}$



En dimension 3

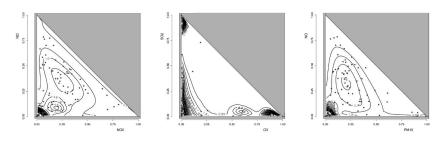
Leeds : PM_{10} , N0, $S0_2$.

MCMC: $T_2 = 60 \, 10^3$; $T_1 = 25 \, 10^3$.

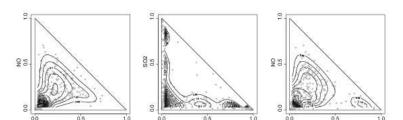


Dimension 5, Leeds : densité "projetée" par paires

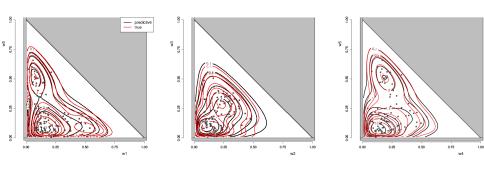
Prédictive par MCMC ($T_2=1\,10^6,\;T_1=5\,10^5$)



Boldi, Davison, méthode non bayésienne (EM)



Dimension 5, Données simulées, mélange de 4 noyaux



 $T_2 = 150 \ 10^3, \ T_1 = 50 \ 10^3.$

Plan

- Extrêmes multivariés
- 2 Modèle contraint de mélange de Dirichlet : Boldi, Daviso
- 3 Modèle reparamétré : sans contraintes
- 4 Résultats : dimension 3 et 5
- Conclusion

Conclusion

Re-paramétrisation du modèle de Boldi et Davison
 ⇒ utilisable en dimension 5, dans un cadre Bayésien.

- Convergence asymptotique prouvée : posterior + Metropolis
- Diagnostiques de convergence : intégration contre des fonctions test de Dirichlet.

Bibliographie

M.-O. Boldi and A. C. Davison.

A mixture model for multivariate extremes.

JRSS: Series B (Statistical Methodology), 69(2):217-229, 2007.

Coles, SG and Tawn, JA

Modeling extreme multivariate events JR Statist. Soc. B, 53:377-392. 1991

P.J. Green.

Reversible jump Markov chain Monte Carlo computation and Bayesian model determination. Biometrika, 82(4):711, 1995.

Resnick, S.I.

Heavy-Tail Phenomena: Probabilistic and Statistical Modeling.

Springer Series in Operations Research and Financial Engineering, 2007

Roberts, G.O. and Rosenthal, J.S.

Harris recurrence of Metropolis-within-Gibbs and trans-dimensional Markov chains The Annals of Applied Probability, 16, 4, 2123 : 2139, 2006.

S. Guillotte, F. Perron, and J. Segers.

Non-parametric bayesian inference on bivariate extremes.

JRSS: Series B (Statistical Methodology), 2011.

Einmahl, J.H.J. and Segers, J.

Maximum empirical likelihood estimation of the spectral measure of an extreme-value distribution. The Annals of Statistics. 37, 5B, 2953:2989, 2009.

Dimension quelconque : Intégration contre une fonction test

- $\varphi: S_p \to \mathbb{R}^+, C_b,$
- On "transforme" l'échantillon $(\theta(t))_{t=1:T}$:

$$f(\boldsymbol{\theta}) = \langle \varphi, h_{\boldsymbol{\theta}} \rangle = \int_{S_{\boldsymbol{\theta}}} \varphi(\mathbf{w}) h_{\boldsymbol{\theta}}(\mathbf{w}) \, \mathrm{d}\mathbf{w}$$

Dimension quelconque : Intégration contre une fonction test

- $\bullet \ \varphi : S_p \to \mathbb{R}^+, \ \mathcal{C}_b,$
- On "transforme" l'échantillon $(\theta(t))_{t=1:T}$:

$$f(\boldsymbol{\theta}) = \langle \varphi, h_{\boldsymbol{\theta}} \rangle = \int_{S_{\boldsymbol{\theta}}} \varphi(\mathbf{w}) h_{\boldsymbol{\theta}}(\mathbf{w}) \, \mathrm{d}\mathbf{w}$$

ullet Si arphi : Dirichlet bornée, expression explicite pour $\left\langle arphi, h_{oldsymbol{ heta}(t)}
ight
angle$!

Fait

Si φ_1 , φ_2 sont Dirichlet, φ_1 bornée, alors $\varphi_1\varphi_2$ est encore Dirichlet.

Double convergence

Proposition

• Ergodicité :

$$\frac{1}{T} \sum_{t=1}^{T} \left\langle \varphi, h_{\boldsymbol{\theta}(t)} \right\rangle \xrightarrow[T \to \infty]{} \mathbf{E}_{\pi_{\boldsymbol{n}}} \left(\left\langle \varphi, h_{(\cdot)} \right\rangle \right)$$

• Consistance de la loi a posteriori : $h_0 = "vraie"$ distribution

$$\mathsf{E}_{\pi_n}(\langle \varphi, h_{(\,\cdot\,)} \rangle) \underset{n \to \infty}{\longrightarrow} \langle \varphi, h_0 \rangle$$

Double convergence

Proposition

• Ergodicité :

$$\frac{1}{T} \sum_{t=1}^{T} \left\langle \varphi, h_{\boldsymbol{\theta}(t)} \right\rangle \xrightarrow[T \to \infty]{} \mathbf{E}_{\pi_{\boldsymbol{n}}} \left(\left\langle \varphi, h_{(\cdot)} \right\rangle \right)$$

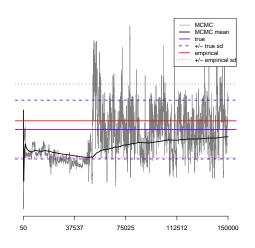
ullet Consistance de la loi a posteriori : $h_0 = \text{"vraie" distribution}$

$$\mathsf{E}_{\pi_n}(\langle \varphi, h_{(\,\cdot\,)} \rangle) \underset{n \to \infty}{\longrightarrow} \langle \varphi, h_0 \rangle$$

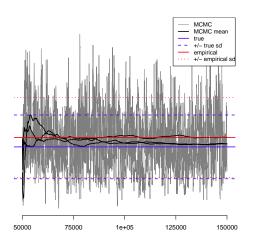
- Si $h_0 = h_{m{ heta}_0}$ (données simulées) : Expression exacte
- Si h_0 inconnu : $\langle \varphi, h_0 \rangle = \mathbf{E}_{h_0}(\varphi)$. Estimateur empirique

$$\hat{\mathsf{E}}(\varphi) = \frac{1}{n} \sum_{i=1}^{n} \varphi(\mathsf{w}_{i})$$

<u>Dimension</u> 5, données simulées (4 noyaux),



Dimension 5, données simulées (4 noyaux)



Stationnarité (Heidelberger) et Gelman ("mixing") : OK