Singular Learning Theory: Insights into Model Choice

Martyn Plummer

AppliBUGS, 26 June 2012

What is singular learning theory?

Sumio Watanabe, Algebraic Geometry and Statistical Learning Theory, Cambridge University Press, 2009.

- The interface between algebraic geometry and statistics
- Allows us to consider statistical models as geometrical objects
- Provides a rigorous asymptotic theory that does not rely on assumptions of smoothness
- In particular, gives generalizations of AIC and BIC

Why have you never hear of it?

- Few people know both algebraic geometry and statistics
- Main results are expressed in the vocabulary of machine learning
- Some practical applications of the theory require further work

Singular models

- A singularity in a statistical model is a point where the dimensionality of the parameter space collapses (e.g. the Fisher information matrix is not of full rank).
- A singular model contains singularities in the parameter space
- Singular models are the rule, not the exception, in hierarchical models
- Normal mixtures
- Hidden Markov Models
- Neural networks
- Bayes networks
- ...

Example: 3-component normal mixture

Suppose we observe $\mathbf{Y}=\left(Y_{1} \ldots Y_{n}\right)$ where

$$
p\left(y_{i} \mid \boldsymbol{\mu}, \boldsymbol{\pi}\right)=\sum_{i=1}^{3} \pi_{i} \phi\left(y_{i}-\mu_{i}\right)
$$

and ϕ is the density of a standard normal mixture. The model is parameterized by $\boldsymbol{\theta}=\left(\mu_{1}, \mu_{2}, \mu_{3}, \pi_{1}, \pi_{2}, \pi_{3}\right)$ where $\sum_{i=1}^{3} \pi_{i}=1$.

Now suppose the true distribution only has 2 components, not 3 . We can represent this as

1. $\mu_{i}=\mu_{j}$ for any $i \neq j$. Then π_{i}, π_{j} are determined only up to $\pi_{i}+\pi_{j}$.
2. $\pi_{i}=0$ for any i. Then μ_{i} is completely undetermined.

Illustration of normal mixture model

Set of parameters knowledge = singularity

Set of probability distributions

Dimensions of a statistical model

There are two distinct quantities that represent the dimensionality of a singular model:
The learning coefficient (λ) shows how fast the posterior distribution shrinks with increasing sample size

The singular fluctuation (ν) shows how strongly the posterior distribution fluctuates.
Both are birational invariants in algebraic geometry. In regular models

$$
\lambda=\mu=d / 2
$$

where d is the dimension of the parameter space.

Training and generalization errors

- Machine learning distinguishes between:

Training error The model fitting criterion applied to the same data set used for estimation
Generalization error The model fitting criterion applied to a new data set

- Model choice should be based on the generalization error
- "Big data" problems allow us to split the data into training and validation samples
- For "small data" problems we use full data for estimation
- Add a complexity penalty to the training error to approximate the generalization error (AIC, DIC)

Widely Applicable Information Criteria (WAIC)

$$
\begin{aligned}
& \mathrm{WAIC}_{1}=\frac{1}{n}\left\{-\sum_{i} \log \mathrm{E}_{\boldsymbol{\theta} \mid \mathbf{Y}}\left\{p\left(Y_{i} \mid \boldsymbol{\theta}\right)\right\}+2 \nu\right\} \\
& \mathrm{WAIC}_{2}=\frac{1}{n}\left\{-\mathrm{E}_{\boldsymbol{\theta} \mid \mathbf{Y}}\left\{\sum_{i} \log p\left(Y_{i} \mid \boldsymbol{\theta}\right)\right\}+2 \nu\right\}
\end{aligned}
$$

where

$$
2 \nu \approx \sum_{i} \operatorname{Var}_{\boldsymbol{\theta} \mid \mathbf{Y}}\left\{\log p\left(Y_{i} \mid \boldsymbol{\theta}\right)\right\}
$$

Similar, but not identical to Gelman's approximation to the effective number of parameters p_{D} used by R2WinBUGS.

International Agency for Research on $p_{D_{\text {Bei }}}=2 \operatorname{Var}_{\boldsymbol{\theta} \mid \mathbf{Y}}\left\{\sum_{i} \log p\left(Y_{i} \mid \boldsymbol{\theta}\right)\right\}$

Widely Applicable Information Criteria (WAIC)

$$
\begin{aligned}
& \mathrm{WAIC}_{1}=\frac{1}{n}\left\{-\sum_{i} \log \mathrm{E}_{\boldsymbol{\theta} \mid \mathbf{Y}}\left\{p\left(Y_{i} \mid \boldsymbol{\theta}\right)\right\}+2 \nu\right\} \\
& \mathrm{WAIC}_{2}=\frac{1}{n}\left\{-\mathrm{E}_{\boldsymbol{\theta} \mid \mathbf{Y}}\left\{\sum_{i} \log p\left(Y_{i} \mid \boldsymbol{\theta}\right)\right\}+2 \nu\right\}
\end{aligned}
$$

where

$$
2 \nu \approx \sum_{i} \operatorname{Var}_{\boldsymbol{\theta} \mid \mathbf{Y}}\left\{\log p\left(Y_{i} \mid \boldsymbol{\theta}\right)\right\}
$$

Similar, but not identical to Gelman's approximation to the effective number of parameters p_{D} used by R2WinBUGS.

International Agency for Research on $p_{D_{\text {Bei }}}=2 \operatorname{Var}_{\boldsymbol{\theta} \mid \mathbf{Y}}\left\{\sum_{i} \log p\left(Y_{i} \mid \boldsymbol{\theta}\right)\right\}$

WAIC vs DIC

- WAIC is an asymptotically correct approximation to the generalization error for singular and non-singular models.
- WAIC is valid even when the model is not true (i.e. $p(\mathbf{Y} \mid \boldsymbol{\theta})$ is not the data-generating distribution for any $\boldsymbol{\theta}$)
- DIC is derived for under assumptions of asymptotic normality of the posterior distribution of $\boldsymbol{\theta}$, so cannot be applied to singular models.
- DIC is derived under an explicit "good model" assumption that the data generating distribution can be well approximated by $p(\mathbf{Y} \mid \boldsymbol{\theta})$ for some $\boldsymbol{\theta}$.

Bayesian Information Criterion

The asymptotic form of the marginal likelihood is

$$
\log p(Y)=\sum_{i}^{n} \log p\left(Y_{i} \mid \widehat{\boldsymbol{\theta}}\right)-\lambda \log (n)+(m-1) \log \log (n)
$$

- In regular models $m=1, \lambda=d / 2$ and we recover Schwarz's BIC.
- In singular models m, λ depend on the true parameter value. (circular reasoning problem when used for model choice).
- Calculation of λ is hard. Only two model classes have been completely characterized

1. Reduced rank regression
2. One-dimensional finite normal mixture models
