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What is singular learning theory?

Sumio Watanabe, Algebraic Geometry and Statistical Learning
Theory, Cambridge University Press, 2009.

• The interface between algebraic geometry and statistics

• Allows us to consider statistical models as geometrical objects

• Provides a rigorous asymptotic theory that does not rely on
assumptions of smoothness

• In particular, gives generalizations of AIC and BIC



Why have you never hear of it?

• Few people know both algebraic geometry and statistics

• Main results are expressed in the vocabulary of machine
learning

• Some practical applications of the theory require further work



Singular models

• A singularity in a statistical model is a point where the
dimensionality of the parameter space collapses (e.g. the
Fisher information matrix is not of full rank).

• A singular model contains singularities in the parameter space

• Singular models are the rule, not the exception, in hierarchical
models

• Normal mixtures
• Hidden Markov Models
• Neural networks
• Bayes networks
• ...



Example: 3-component normal mixture

Suppose we observe Y = (Y1 . . .Yn) where

p(yi | µ,π) =
3∑

i=1

πiφ(yi − µi )

and φ is the density of a standard normal mixture. The model is
parameterized by θ = (µ1, µ2, µ3, π1, π2, π3) where

∑3
i=1 πi = 1.

Now suppose the true distribution only has 2 components, not 3.
We can represent this as

1. µi = µj for any i 6= j . Then πi , πj are determined only up to
πi + πj .

2. πi = 0 for any i . Then µi is completely undetermined.



Illustration of normal mixture model



Dimensions of a statistical model

There are two distinct quantities that represent the dimensionality
of a singular model:

The learning coefficient (λ) shows how fast the posterior
distribution shrinks with increasing sample size

The singular fluctuation (ν) shows how strongly the posterior
distribution fluctuates.

Both are birational invariants in algebraic geometry.
In regular models

λ = µ = d/2

where d is the dimension of the parameter space.



Training and generalization errors

• Machine learning distinguishes between:

Training error The model fitting criterion applied to the
same data set used for estimation

Generalization error The model fitting criterion applied to a
new data set

• Model choice should be based on the generalization error

• “Big data” problems allow us to split the data into training
and validation samples

• For “small data” problems we use full data for estimation

• Add a complexity penalty to the training error to approximate
the generalization error (AIC, DIC)



Widely Applicable Information Criteria (WAIC)

WAIC1 =
1

n

{
−
∑
i

log Eθ|Y {p (Yi | θ)}+ 2ν

}

WAIC2 =
1

n

{
−Eθ|Y

{∑
i

log p(Yi | θ)

}
+ 2ν

}

where
2ν ≈

∑
i

Varθ|Y {log p(Yi | θ)}

Similar, but not identical to Gelman’s approximation to the
effective number of parameters pD used by R2WinBUGS.

pD = 2 Varθ|Y

{∑
i

log p(Yi | θ)

}
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WAIC vs DIC

• WAIC is an asymptotically correct approximation to the
generalization error for singular and non-singular models.

• WAIC is valid even when the model is not true (i.e. p(Y | θ)
is not the data-generating distribution for any θ)

• DIC is derived for under assumptions of asymptotic normality
of the posterior distribution of θ, so cannot be applied to
singular models.

• DIC is derived under an explicit “good model” assumption
that the data generating distribution can be well
approximated by p(Y | θ) for some θ.



Bayesian Information Criterion

The asymptotic form of the marginal likelihood is

log p(Y ) =
n∑
i

log p(Yi | θ̂)− λ log(n) + (m − 1) log log(n)

• In regular models m = 1, λ = d/2 and we recover Schwarz’s
BIC.

• In singular models m, λ depend on the true parameter value.
(circular reasoning problem when used for model choice).

• Calculation of λ is hard. Only two model classes have been
completely characterized

1. Reduced rank regression
2. One-dimensional finite normal mixture models


