Heterogeneity and population dynamics

Olivier Gimenez

olivier.gimenez@cefe.cnrs.fr http://www.cefe.cnrs.fr/olivier-gimenez

Population dynamics in the wild

Ecology: Impact of global change

Evolution: How to adapt when facing changing environments

Management : Propose and evaluate strategies

Faucon crécerelle

Manchot empereur

Saumon atlantique

Sanglier

Population dynamics in the wild

D Investigating process in natural populations

D Long-term individual monitoring datasets

■ Methodological issues when moving from lab to natural conditions

Issue 1: detectability < 1</p>

Issue 2: individual heterogeneity (IH)

Issue of detectability < 1

How to reliably estimate demographic parameters in the wild?

D Individuals may be seen or not

If they're not... Are they breeding? Are they on the study site? Are they dead?

Individually mark and monitor individuals: capture-recapture (CR) data

Bias in survival and rate of senescence

Bias in shape of selection

Issue of individual heterogeneity (IH)

D Standard CR models assume homogeneity

Inter-individual variation in demographic
parameters = individual heterogeneity (IH)

From a statistical point of view, IH can cause bias in parameter estimates

From a biological point of view, IH is of interest – individual quality

Accounting for individual heterogeneity

D CR models do not cope that well with IH

- If you're a biologist, rely on empirical measures (mass, gender, age, experience, etc.)
 How to incorporate this information?
- If you're a statistician, intrinsic property of individuals
 - How to filter out the signal from noisy observations?

Capture-recapture models

D Intro: CR data and state-space models

How to account for individual variation?

- Random-effect models
- Non-parametric Bayesian approach

Perspectives

Common marking methods

• Ear tags for mammals / leg bands for birds

• Passive integrated transponder (PIT) tags

photo-identification

Whales

#0008 CASCADE Atlantic Cetacean Research Ctr.

DNA identification

Wolves

Bats

Modelling CR data

\square An encounter history: $h_i = (1 \ 0 \ 1)$

$$\Pr(h_i) = \phi(1-p)\phi p$$

\Box Survival probability ϕ **\Box** Detection probability p

Modelling CR data

D A probabilistic framework developed in the 60s

$$\Pr(h_i) = \phi(1-p)\phi p$$

□ Central role of likelihood (frequentist / bayesian) $L = \prod_{i} \Pr(h_i)$

□ How to deal with IH in survival and/or detection?

State-space modelling of CR data

Case study in conservation biology

- Wolf is recolonizing France
- Problematic interactions with human activities
- Population dynamics as a tool for management and conservation

Sources of heterogeneity in wolves

Sampling

DNA sequencing

- Wide area and genetic CR data
- Social species

Random effect CR model

□ On logit scale, detection probability is:

 $logit(p_i) = \mu + \varepsilon_i$

□ With random effect

$$\varepsilon_i \sim N(0, \sigma^2)$$

 \blacksquare Uniform prior on SD σ of the random effect

WITHOUT heterogeneity

WITH heterogeneity

Non-parametric Bayesian approach

□ $F(x) = \int N(x|\theta, \sigma^2) Q(d\theta)$ where $Q(d\theta)$ is a discrete mixing distribution

Dirichlet process as prior on $Q(d\theta)$

D On the logit scale: $logit(p_i) = \mu + \varepsilon_i$

u With $\varepsilon_i \sim N(\theta_h, \sigma^2)$ with probability π_h

 $\Box \pi_h$ defined by stick-breaking prior

detectability cluster 2

detectability cluster 3

detectability cluster 4

Conclusions

□ CR methodology is catching up with 'p=1' world

I IH needs to be accounted for

\square State-space models : IH as well as p < 1

D If possible, biological view – measure IH on the field

Perspectives

Model selection?

Model	Dev	DIC	рD
homogeneous	174.9	273.6	98.5
(single) normal random effect	126.1	228.8	101.1
mixture of normal distributions	124.3	227.9	103.8

Computational burden?

User-friendly implementation?

References

Dirichlet process

DFerguson, T.S. (1973). A Bayesian analysis of some nonparametric problems. Ann. Stat. 1:209-230

■Ohlssen et al. (2007). Flexible random-effects models using Bayesian semiparametric models: Applications to institutional comparisons. Statistics in Medicine 26:2088-2112

■Sethuraman, J. (1994). A constructive definition of Dirichlet priors. Stat Sin 4:639-650

Capture-recapture models

■Cubaynes et al. (2010). Importance of accounting for detection heterogeneity when estimating abundance: the case of French wolves. Conservation Biology 24:621-626

□Gimenez et al. (2007). State-space modelling of data on marked individuals. Ecological Modelling 206:431-438

□Gimenez et al. (2008). The risk of flawed inference in evolutionary studies when detectability is less than one. The American Naturalist. 172:441–448.

Gimenez & Choquet (2010). Individual heterogeneity in studies on marked animals using numerical integration: capture-recapture mixed models. Ecology 91:951-957

Gimenez et al. (2012). Estimating demographic parameters using hidden process dynamic models. Theoretical Population Biology *in press*

