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June 20, 2013

andrea.rau@jouy.inra.fr Joint estimation of causal effects AppliBUGS 1 / 26



Introduction GRN

Introduction: Gene regulatory networks (GRN)

Groups of coordinated genes that interact indirectly with one another
through transcription factors
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Introduction Causal effects

Effect of an intervention on a DAG: Total causal effects

Following an intervention do(Xi = xi), consider the expected value of each
gene via do-calculus (Pearl, 2000):

E(Xj |do(Xi = xi)) =

{
E(Xj) if Xj ∈ pa(Xi)∫
E(Xj |xi , pa(Xi))P(pa(Xi))dpa(Xi) if Xj /∈ pa(Xi)

Note: P(Y |do(X = x)) 6= P(Y |X = x)

Definition: Total causal effects

βij =
∂

∂x E(Xj |do(Xi = xi))

Equal to 0 if Xi is not an ancestor of Xj
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Introduction Causal effects

Markov equivalence in DAGs

Markov equivalence: two different network structures can yield the
same joint distribution and observational data alone generally cannot
orient edges
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Introduction Causal effects

Estimating causal effects from intervention data

Idea: if gene X1 is regulated by gene X2, its expression level after
knock-out of X2 should differ considerably compared to its wild type
(steady-state) expression

Pinna et al. (2010):
Data: one wild-type (Xwt

j for gene j), and one knock-out experiment
for each gene (X i

j for gene j under knock-out of gene i)
Four different deviation matrices calculated, feed-forward edges
down-ranked, and causal links ranked in order of absolute value

Note: winner of the DREAM4 challenge
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Introduction Causal effects

Estimating causal effects from observational data

Some causal information can be recovered from observational data alone...

Intervention-calculus when the DAG is Absent (Maathuis et al., 2009)
1 Estimate the equivalence class of the DAG via the PC-algorithm

(Kalisch and Bühlmann, 2007)
2 Use intervention calculus to estimate bounds for causal effects across

equivalence classes, and rank causal effects

Shown to be better able to predict strong causal effects using
observational data alone (Maathuis al., 2010) than Lasso and
elastic-net
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Joint estimation of causal effects

Notation

Xj is the expression of gene j
Gaussian Bayesian network (GBN):

Xj = mj +
∑

i∈pa(j)
wijXi + εj with εj ∼ N (0, σ2

j )

for j = 1, . . . , p
wij 6= 0 if and only if i ∈ pa(j)
Directed acyclic graph (DAG), and nodes have been ordered so that
i ∈ pa(j)⇒ i < j (i.e., W = (wij) is upper triangular)
Model parameters are θ = (W,m, σ)

Total causal effects are β = (I−W)−1 = I + W + . . .+ W p−1
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Joint estimation of causal effects Likelihood and parameter estimation

Joint log-likelihood (1)

Consider experiment k with intervention on Jk (Jk = ∅ means no
intervention), where Kj = {k, j /∈ Jk} and Nj = |Kj |.

The log-likelihood of the model can be written as:

`(m, σ,w) = Cst−
∑

j
Nj log(σj)−

1
2

∑
k

∑
j /∈Jk

1
σ2

j
(xk

j − xkWeT
j −mj)

2

Then
mj =

1
Nj

∑
k∈Kj

(xk
j − xkWeT

j )
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Joint estimation of causal effects Likelihood and parameter estimation

Joint log-likelihood (2)
Consider experiment k with intervention on Jk (Jk = ∅ means no
intervention), where Kj = {k, j /∈ Jk} and Nj = |Kj |.

The log-likelihood of the model can now be written as:

`(σ,w) = Cst−
∑

j
Nj log(σj)−

1
2

∑
k

∑
j /∈Jk

1
σ2

j
(yk,j

j − yk,jWeT
j )2

where for (k, j) such that j /∈ Jk : yk,j = xk − 1/Nj
∑

k′∈Kj xk′

Then w can be estimated by solving the following linear system:∑
i ′,(i ′,j)∈E

wi ′,j
∑

k∈Kj

yk,j
i yk,j

i ′ =
∑

k∈Kj

yk,j
i yk,j

j for all (i , j) ∈ E

and
σ2

j =
1
Nj

∑
k∈Kj

(yk,j
j − yk,jWeT

j )2
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Joint estimation of causal effects Node ordering

Identifying the best ordering of nodes

Some possibilities:
1 Deterministic quick-sort algorithm to determine optimal node ordering

2 Explore the posterior distribution of the node order and estimated
causal effects via an empirical MCMC algorithm

Node ordering proposal via Mallows model, using node ordering of
previous iteration as reference
Full estimation of model parameters for a given node ordering using
likelihood calculations
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Joint estimation of causal effects Node ordering

Mallows model (Mallows 1957)

Let R be a modal or reference ordering, φ ∈ (0, 1] a temperature
parameter, and r = r1r2 . . . rm be a node ordering:

P(r) = P(r |R, φ) = 1
Z φ

d(R,r)

where Z is a normalizing constant and

d(R, r) =
∑
i<j

1 [rj � ri ]

is a dissimilarity measure between R and r using the number of
pairwise disagreements
φ = 1 corresponds to a dirac on R, φ = 0 corresponds to a uniform
distribution over all node orderings

Sampling performed through repeated insertion model (Doignon et al. 2004)
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Results Simulations

Simulation study: Estimation of causal effects and node
ordering

Simulated data following a GBN (p = 10
genes), with 10 wt and 1 KO for each gene:

Non-zero wij ∈ (−1,−.25) ∪ (.25, 1)
mj = 0.5 and σj = {0.01, 0.1, 0.5} for
all genes j

Figure 5 from Kalisch and
Bühlmann (2007)
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Results Simulations

GBN estimation of causal effects: Structure known
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Results Simulations

GBN estimation of causal effects: Quick-sort algorithm
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Results Simulations

Simulation results: Observational + intervention data

GBN1 Pinna PC-alg (opt) PC-alg (pes)
AUROC 0.790 0.612 0.718 0.644
AUPRC 0.654 0.422 0.551 0.499

Spearman 0.539 0.121 0.409 0.27

Table: σ = 0.5. Results averaged over 100 simulations. AUROC = area under the
ROC curve, AUPRC = area under the precision-recall curve, Spearman =
Spearman correlation between true and estimated matrices.

1 GBN MCMC: 50k iterations, 5k burn-in, thinning every 50 iterations
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Results Simulations

Simulation results: Observational + intervention data

GBN1 Pinna PC-alg (opt) PC-alg (pes)
AUROC 0.948 0.821 0.718 0.644
AUPRC 0.868 0.732 0.551 0.499

Spearman 0.815 0.597 0.409 0.27

Table: σ = 0.1. Results averaged over 100 simulations. AUROC = area under the
ROC curve, AUPRC = area under the precision-recall curve, Spearman =
Spearman correlation between true and estimated matrices.

1 GBN MCMC: 50k iterations, 5k burn-in, thinning every 50 iterations
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Results Simulations

Simulation results: Observational + intervention data

GBN1 Pinna PC-alg (opt) PC-alg (pes)
AUROC 0.984 0.944 0.714 0.657
AUPRC 0.934 0.900 0.546 0.521

Spearman 0.945 0.827 0.389 0.265

Table: σ = 0.01. Results averaged over 100 simulations. AUROC = area under
the ROC curve, AUPRC = area under the precision-recall curve, Spearman =
Spearman correlation between true and estimated matrices.

1 GBN MCMC: 50k iterations, 5k burn-in, thinning every 50 iterations
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Results Simulations

Simulation results: posterior distribution of node ordering
(σ = 0.5)

10

9

8

7

6

5

4

3

2

1

1 2 3 4 5 6 7 8 9 10
Estimated

N
od

e

0.05

0.10

0.15

0.20

value

andrea.rau@jouy.inra.fr Joint estimation of causal effects AppliBUGS 18 / 26



Results Simulations

Simulation results: posterior distribution of node ordering
(σ = 0.1)

10

9

8

7

6

5

4

3

2

1

1 2 3 4 5 6 7 8 9 10
Estimated

N
od

e

0.0

0.2

0.4

0.6

0.8

value

andrea.rau@jouy.inra.fr Joint estimation of causal effects AppliBUGS 19 / 26



Results Simulations

Simulation results: posterior distribution of node ordering
(σ = 0.01)
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Results DREAM4 challenge

DREAM4 challenge

DREAM challenge: international competition held yearly to contribute to
the development of powerful inference methods (Stolovitzky et al., 2007)

DREAM4 in silico network challenge:
Goal: Infer directed GRNs from simulated data (p = 10, p = 100) and
provide a level of confidence for the presence of each possible edge
True network topologies (with feedback loops) extracted from
transcriptional regulatory networks of E. coli and S. cerevisiae
Data: simulated wild-type, knock-outs, knockdowns, multifactorial
perturbations, and time series expression data (stochastic differential
equations + measurement noise)
Pinna et al. method was top performer
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Results DREAM4 challenge

DREAM4 challenge: Data example
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Results DREAM4 challenge

DREAM4 challenge details

50k iterations run, with burn-in of 5k and thinning every 50 iterations
Trial run to select φ = exp(−1/0.8) such that acceptance rate is ≈
35%

Compare GBN MCMC total causal effect posterior means compared to
Pinna W D matrix and IDA method

GBN MCMC: wild-type, knock-out, and multifactorial perturbation
data
IDA: wild-type and multifactorial perturbation data
Pinna: wild-type and knock-out data
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Results DREAM4 challenge

DREAM4 challenge results
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Discussion

Discussion

GBN for a mixture of steady-state and knock-out (and multiple or partial
knock-out!) data to enable calculation of total causal effects:

MCMC algorithm to explore posterior distribution of node ordering
Initial results very encouraging and suggest the benefit in jointly
analyzing steady-state and intervention data, as well as multiple
intervention (i.e., double or triple knock-out) data

Future work: Experimental design to plan future (multiple) knock-out
experiments...
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Thanks to Rémi Bancal (M2 intern)
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