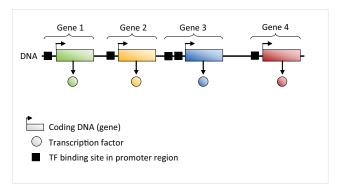
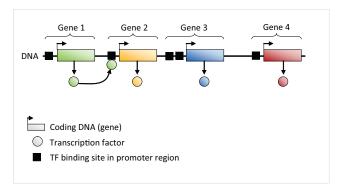
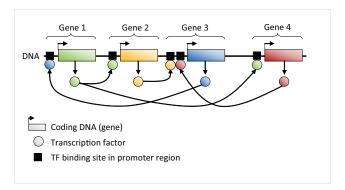
Joint estimation of causal effects from observational and intervention gene expression data AppliBUGS @ Paris

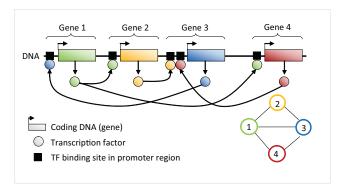
Andrea Rau, Florence Jaffrézic, Grégory Nuel

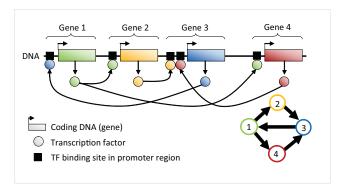
June 20, 2013





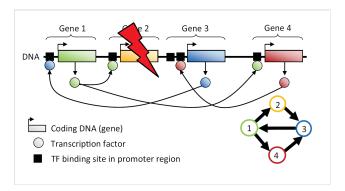






GRN

Introduction: Gene regulatory networks (GRN)



Effect of an intervention on a DAG: Total causal effects

Following an intervention $do(X_i = x_i)$, consider the expected value of each gene via do-calculus (Pearl, 2000):

$$\mathbb{E}(X_j | \mathsf{do}(X_i = x_i)) = \begin{cases} \mathbb{E}(X_j) & \text{if } X_j \in \mathsf{pa}(X_i) \\ \int \mathbb{E}(X_j | x_i, \mathsf{pa}(X_i)) \mathbb{P}(\mathsf{pa}(X_i)) d\mathsf{pa}(X_i) & \text{if } X_j \notin \mathsf{pa}(X_i) \end{cases}$$

Note: $\mathbb{P}(Y|\operatorname{do}(X=x)) \neq \mathbb{P}(Y|X=x)$

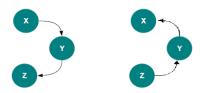
Definition: Total causal effects

$$\beta_{ij} = \frac{\partial}{\partial x} \mathbb{E}(X_j | \operatorname{do}(X_i = x_i))$$

• Equal to 0 if X_i is not an ancestor of X_j

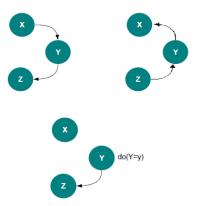
Markov equivalence in DAGs

• Markov equivalence: two different network structures can yield the same joint distribution and observational data alone generally cannot orient edges



Markov equivalence in DAGs

• Markov equivalence: two different network structures can yield the same joint distribution and observational data alone generally cannot orient edges



Estimating causal effects from intervention data

Idea: if gene X_1 is regulated by gene X_2 , its expression level after knock-out of X_2 should differ considerably compared to its wild type (steady-state) expression

Pinna *et al.* (2010):

- Data: one wild-type (X_j^{wt} for gene j), and one knock-out experiment for each gene (X_i^i for gene j under knock-out of gene i)
- Four different deviation matrices calculated, feed-forward edges down-ranked, and causal links ranked in order of absolute value

Note: winner of the DREAM4 challenge

Estimating causal effects from observational data

Some causal information can be recovered from observational data alone...

Intervention-calculus when the DAG is Absent (Maathuis et al., 2009)

- Estimate the equivalence class of the DAG via the PC-algorithm (Kalisch and Bühlmann, 2007)
- Ose intervention calculus to estimate bounds for causal effects across equivalence classes, and rank causal effects
 - Shown to be better able to predict strong causal effects using observational data alone (Maathuis *al.*, 2010) than Lasso and elastic-net

Notation

- X_j is the expression of gene j
- Gaussian Bayesian network (GBN):

$$X_j = m_j + \sum_{i \in \mathsf{pa}(j)} w_{ij} X_i + arepsilon_j$$
 with $arepsilon_j \sim \mathcal{N}(0, \sigma_j^2)$

for $j = 1, \ldots, p$

- $w_{ij} \neq 0$ if and only if $i \in pa(j)$
- Directed acyclic graph (DAG), and nodes have been ordered so that $i \in pa(j) \Rightarrow i < j$ (i.e., $\mathbf{W} = (w_{ij})$ is upper triangular)
- Model parameters are $\theta = (\mathbf{W}, m, \sigma)$
- Total causal effects are $\beta = (I \mathbf{W})^{-1} = I + W + \ldots + W^{p-1}$

Joint log-likelihood (1)

Consider experiment k with intervention on \mathcal{J}_k ($\mathcal{J}_k = \emptyset$ means no intervention), where $\mathcal{K}_j = \{k, j \notin \mathcal{J}_k\}$ and $N_j = |\mathcal{K}_j|$.

The log-likelihood of the model can be written as:

$$\ell(m,\sigma,w) = \mathsf{Cst} - \sum_{j} N_j \log(\sigma_j) - \frac{1}{2} \sum_{k} \sum_{j \notin \mathcal{J}_k} \frac{1}{\sigma_j^2} (x_j^k - x^k \mathbf{W} e_j^T - m_j)^2$$

Then

$$m_j = \frac{1}{N_j} \sum_{k \in \mathcal{K}_j} (x_j^k - x^k \mathbf{W} e_j^T)$$

Joint log-likelihood (2)

Consider experiment k with intervention on \mathcal{J}_k ($\mathcal{J}_k = \emptyset$ means no intervention), where $\mathcal{K}_j = \{k, j \notin \mathcal{J}_k\}$ and $N_j = |\mathcal{K}_j|$.

The log-likelihood of the model can now be written as:

$$\ell(\sigma, w) = \mathsf{Cst} - \sum_{j} N_{j} \log(\sigma_{j}) - \frac{1}{2} \sum_{k} \sum_{j \notin \mathcal{J}_{k}} \frac{1}{\sigma_{j}^{2}} (y_{j}^{k,j} - y^{k,j} \mathbf{W} e_{j}^{\mathsf{T}})^{2}$$

where for (k,j) such that $j \notin \mathcal{J}_k$: $y^{k,j} = x^k - 1/N_j \sum_{k' \in \mathcal{K}_j} x^{k'}$

Then w can be estimated by solving the following linear system:

$$\sum_{i',(i',j)\in\mathcal{E}} w_{i',j} \sum_{k\in\mathcal{K}_j} y_i^{k,j} y_{i'}^{k,j} = \sum_{k\in\mathcal{K}_j} y_i^{k,j} y_j^{k,j} \quad \text{for all } (i,j)\in\mathcal{E}$$

and

$$\sigma_j^2 = \frac{1}{N_j} \sum_{k \in \mathcal{K}_j} (y_j^{k,j} - y^{k,j} \mathbf{W} e_j^T)^2$$

i

Identifying the best ordering of nodes

Some possibilities:

- **1** Deterministic quick-sort algorithm to determine optimal node ordering
- Explore the posterior distribution of the node order and estimated causal effects via an empirical MCMC algorithm
 - Node ordering proposal via Mallows model, using node ordering of previous iteration as reference
 - Full estimation of model parameters for a given node ordering using likelihood calculations

Node ordering

Mallows model (Mallows 1957)

• Let *R* be a modal or reference ordering, $\phi \in (0, 1]$ a temperature parameter, and $r = r_1 r_2 \dots r_m$ be a node ordering:

$$P(r) = P(r|R,\phi) = \frac{1}{Z}\phi^{d(R,r)}$$

where Z is a normalizing constant and

$$d(R,r) = \sum_{i < j} \mathbf{1} \left[r_j \succ r_i \right]$$

is a dissimilarity measure between R and r using the number of pairwise disagreements

• $\phi = 1$ corresponds to a dirac on R, $\phi = 0$ corresponds to a uniform distribution over all node orderings

Sampling performed through repeated insertion model (Doignon et al. 2004)

andrea.rau@jouy.inra.fr

Joint estimation of causal effects

Simulation study: Estimation of causal effects and node ordering

- Simulated data following a GBN (p = 10 genes), with 10 wt and 1 KO for each gene:
 - Non-zero $w_{ij} \in (-1, -.25) \cup (.25, 1)$
 - $m_j = 0.5$ and $\sigma_j = \{0.01, 0.1, 0.5\}$ for all genes j

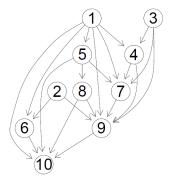
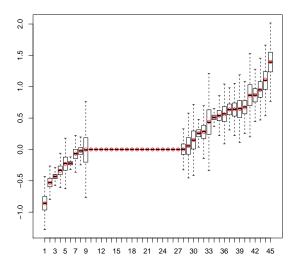


Figure 5 from Kalisch and Bühlmann (2007)

GBN estimation of causal effects: Structure known

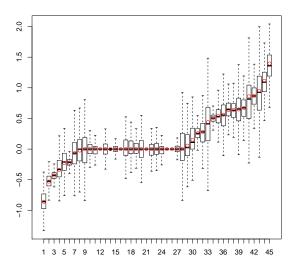


(Note: 2000 simulated datasets, $\sigma = 0.1$)

andrea.rau@jouy.inra.fr

Joint estimation of causal effects

GBN estimation of causal effects: Quick-sort algorithm



(Note: 2000 simulated datasets, $\sigma = 0.1$)

andrea.rau@jouy.inra.fr

Joint estimation of causal effects

Simulation results: Observational + intervention data

	GBN^1	Pinna	PC-alg (opt)	PC-alg (pes)
AUROC	0.790	0.612	0.718	0.644
AUPRC	0.654	0.422	0.551	0.499
Spearman	0.539	0.121	0.409	0.27

Table: $\sigma = 0.5$. Results averaged over 100 simulations. AUROC = area under the ROC curve, AUPRC = area under the precision-recall curve, Spearman = Spearman correlation between true and estimated matrices.

¹ GBN MCMC: 50k iterations, 5k burn-in, thinning every 50 iterations

Simulation results: Observational + intervention data

	GBN^1	Pinna	PC-alg (opt)	PC-alg (pes)
AUROC	0.948	0.821	0.718	0.644
AUPRC	0.868	0.732	0.551	0.499
Spearman	0.815	0.597	0.409	0.27

Table: $\sigma = 0.1$. Results averaged over 100 simulations. AUROC = area under the ROC curve, AUPRC = area under the precision-recall curve, Spearman = Spearman correlation between true and estimated matrices.

¹ GBN MCMC: 50k iterations, 5k burn-in, thinning every 50 iterations

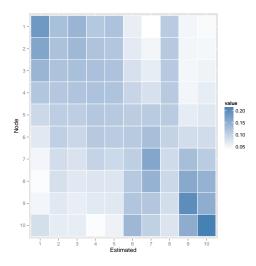
Simulation results: Observational + intervention data

	GBN^1	Pinna	PC-alg (opt)	PC-alg (pes)
AUROC	0.984	0.944	0.714	0.657
AUPRC	0.934	0.900	0.546	0.521
Spearman	0.945	0.827	0.389	0.265

Table: $\sigma = 0.01$. Results averaged over 100 simulations. AUROC = area under the ROC curve, AUPRC = area under the precision-recall curve, Spearman = Spearman correlation between true and estimated matrices.

¹ GBN MCMC: 50k iterations, 5k burn-in, thinning every 50 iterations

Simulation results: posterior distribution of node ordering ($\sigma=0.5)$



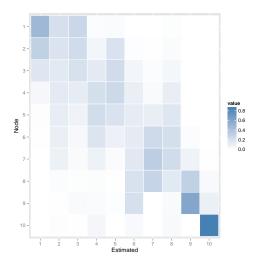
andrea.rau@jouy.inra.fr

Joint estimation of causal effects

AppliBUGS

18 / 26

Simulation results: posterior distribution of node ordering ($\sigma=0.1)$

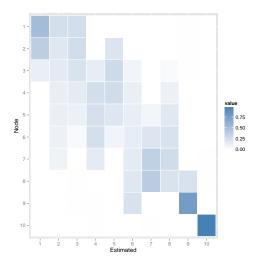


andrea.rau@jouy.inra.fr

Joint estimation of causal effects

AppliBUGS

Simulation results: posterior distribution of node ordering ($\sigma=0.01)$



andrea.rau@jouy.inra.fr

Joint estimation of causal effects

AppliBUGS

DREAM4 challenge

DREAM challenge: international competition held yearly to contribute to the development of powerful inference methods (Stolovitzky *et al.*, 2007)

DREAM4 in silico network challenge:

- Goal: Infer directed GRNs from simulated data (p = 10, p = 100) and provide a level of confidence for the presence of each possible edge
- True network topologies (with feedback loops) extracted from transcriptional regulatory networks of *E. coli* and *S. cerevisiae*
- Data: simulated wild-type, knock-outs, knockdowns, multifactorial perturbations, and time series expression data (stochastic differential equations + measurement noise)
- Pinna et al. method was top performer

DREAM4 challenge: Data example

	G_1	G_2	G_3	G_4	G_5	
G^{wt}	0.14	0.89	0.01	0.87	0.14	39
G^1	0.00	0.96	0.00	0.86	0.06	
G^2	0.68	0.00	0.04	0.90	0.05	25/4
G^3	0.17	0.86	0.00	0.88	0.02	6 1 10 7
G^4	0.13	0.86	0.08	0.00	0.09	
G^5	0.12	0.78	0.09	0.91	0.00	8

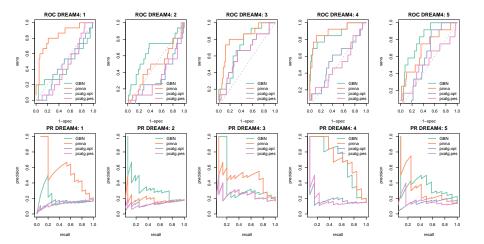
DREAM4 challenge details

- 50k iterations run, with burn-in of 5k and thinning every 50 iterations
- Trial run to select $\phi = \exp(-1/0.8)$ such that acceptance rate is \approx 35%

Compare GBN MCMC total causal effect posterior means compared to Pinna W^D matrix and IDA method

- GBN MCMC: wild-type, knock-out, and multifactorial perturbation data
- IDA: wild-type and multifactorial perturbation data
- Pinna: wild-type and knock-out data

DREAM4 challenge results



Discussion

GBN for a mixture of steady-state and knock-out (and multiple or partial knock-out!) data to enable calculation of total causal effects:

- MCMC algorithm to explore posterior distribution of node ordering
- Initial results very encouraging and suggest the benefit in jointly analyzing steady-state and intervention data, as well as multiple intervention (i.e., double or triple knock-out) data

• Future work: Experimental design to plan future (multiple) knock-out experiments...

Thanks to Rémi Bancal (M2 intern)

References:

- Doignon, Pekeč, Regenwetter (2004) The repeated insertion model for rankings: Missing link between two subset choice models. Psychometrika, 69(1):33-54.
- Kalisch and Bühlmann (2007) Estimating high-dimensional directed acyclic graphs with the PC-algorithm. Journal of Machine Learning Research 8, 613-636.
- Lu and Boutilier (2011) Learning Mallows models with pairwise preferences. Proceedings of the 28th International Conference on Machine Learning (ICML), 145-152.
- Maathuis et al. (2009) Estimating high-dimensional intervention effects from observational data. Annals of Statistics 37:6A, 3133-3164.
- Maathuis et al. (2010) Predicting causal effects in large-scale systems from observational data. Nature Methods 7:4, 247-248.
- Pearl (2000) Causality: Models, Reasoning, and Inference. Cambridge University Press, Cambridge.
- Pinna et al. (2007) From knockouts to networks: Establishing direct cause-effect relationships through graph analysis. PLoS One 5:10.
- Stolovitzky et al (2007) Dialogue on reverse-engineering assessment and methods. Ann NY Acad Sci 1115, 1-22.