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Epidemiology of ionizing radiation

All people are exposed to ionizing radiation (IR)

Epidemiology of IR = Study of the stochastical effects of IR
I Non-specific late effects with dose-dependent occurrence

• Cancer diseases (solid, leukemia), cardiovascular diseases, cataract,...

I Observational science (cohort studies, case-control studies) : confusing
factors, bias, missing data, extrapolations from one population to another...
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An important topic for radiation protection...

At acute, medium-to-high level,
external exposure to IR, excess risk of
leukemia, breast, lung and thyroid cancer
are clearly demonstrated

The excess risk of cancer diseases
increases with the dose

Latency minimal period from a few years
to decades

May chronic exposure to low doses rate of IR result in adverse health
effects ?

Only a few results at low doses rates of IR :

Lung cancer following radon inhalation (Darby et al., 2005 ; IARC, 2001)

Excess risk of leukemia among children exposed in-utero (>10 mSv)

BUT mixed findings for other potential health effects at doses <100 mSv.
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Limits of current epidemiological studies

Latency minimal period from IR exposure to cancer occurrence from a few
years to decades

Suboptimal designs (bias, non-observed confusing factors, ... )

→ Lack of statistical power to detect some potential small health effects of
IR at low dose rates

Additional well-designed epidemiological studies are on progress BUT :

Years to decades of observations required to reach an adequate
statistical power to detect such potential health impacts

Some quicker replies are legitimately called on the expected magnitude of
a potential risk !

→ Alternative approach : Quantitative Risk Assessment (QRA) (NRC, 2009)
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Quantitative assessment of radiation-related risk : Overview

Step 1 : Building one (several) probabilistic model(s) to describe the
risk-exposure/dose-effect relationship of interest.

Step 2 : Fitting the proposed model(s) to data observed in the so-called
evidentiary population.

Step 3 : Predicting some health impact indicators in a so-called target
population (e.g., years of life lost, lifetime excess cancer deaths, attributable
risk proportion,...) from some dose estimations and the information provided by
the evidentiary population.
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Quantitative assessment of radiation-related risk : Remark

In practice, the Life Span Study (LSS) of Hiroshima and
Nagasaki A-bomb survivors is used as the evidentiary
population.

I Main basis for setting international radiation protection
standards (ICRP 2007)

I → The WHO report ”Health Risk Assessment from the
nuclear accident after the 2011 Great East Japan
Earthquake and Tsunami based on preliminary dose
estimation” (28/02/2013, avalaible online)
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Quantitative assessment of radiation-related risk : Necessary
assumptions
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Quantitative assessment of radiation-related risk : Some
methodological limits

Many statistical models describe the evolution over time of the Excess Relative
or Absolute Risk (ERR or EAR) of cancer due to IR from LSS but usual
practice of QRA ignores :

Model selection uncertainty Parameters uncertainty
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The multi-model inference approach - Walsh & Kaiser (2012)

Walsh & Kaiser (2012) examine the impact of combining models for
radiation-related leukemia risks assessments

They have followed an influential work by Burnham & Anderson, (1998,
2004) −→ a frequentist model-averaging procedure based on AIC weights

Considered as an objective basis for multimodel inference in many fields
like epidemiology, biology and ecology (Zhang and Townsend (2009) ;
Burnham et al. (2011) ; Walsh and Schneider (2013))
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The multi-model inference approach - Burnham & Anderson (2004)

Let Mk (k = 1, . . . ,K) be K competing risk models considered, each one
defined by a set of parameters θk . and ∆ be a quantity of interest to
estimate/predict and y the observed data.

A model-averaged estimator of ∆ is given by :

∆̂ =
K∑

k=1

∆̂kωk

where ωk (k=1,. . . ,K) are the Akaike weights defined by :

ωk =
exp(−0.5(4AICk))∑K
j=1 exp(−0.5(4AICj))

where

AICk = −2log [y |θk ] + 2pk n >> pk

4AICk = AICk − AICmin
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The multi-model inference approach - Burnham & Anderson (2004)

Burnham & Anderson (2004) propose the following Bayesian interpretation of
the AIC weights.

Let πk be the prior probability placed on model Mk . Then the posterior
probability for model Mk given data y is :

[Mk |y ] ' exp(−0.5(4BICk))πk∑K
j=1 exp(−0.5(4BICj))πj

If the model prior probability πk are proportional to

exp(0.5(4BICk)exp(−0.5(4AICk)

then

[Mk |y ] ' exp(−0.5(4AICk))∑K
j=1 exp(−0.5(4AICj))

= ωk

”...traditional Bayesian thinking about the prior distribution on models has
been that πk , k=1,. . . K would also not depend on n or pk . This approach is
neither necessary nor reasonable.” (Burnham & Anderson (2004))
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Aim of the work

Investigate the use of Bayesian Model Averaging (BMA) to
account for model and parameters uncertainties in cancer risk
assessments due to IR
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Natural background Ionizing Radiation and childhood leukemia (1)

Natural Background Radiation (NBR) constitutes the major source of
exposure to chronic IR for most of the world population (UNSCEAR, 2008)

Three components contribute to 90% of the effective dose delivered
I Radon gas (222Rn and 220Rn) and its decay products
I Terrestrial gamma rays (TGR)
I High energy cosmic ray particle

NBR & childhood leukemia : Why is it an important topic ?

During childhood, equivalent dose received by the red bone marrow
(RBM) ranging from a few to several tens of mSv ! ! !

Childhood leukemia
I Relevant health indicator when studying the effects of NBR
I Most strongly associated with exposure to external whole-body irradiation
I Children more radiosensitive than adults (NRC, 2006)

Childhood leukemia = the most frequent cancer in children but whose
etiology remains widely unknown (Eden, 2010)
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Natural background Ionizing Radiation and childhood leukemia (2)

Positive association between radon exposure and leukemia incidence
I Some, though not all, ecological studies (Evrard et al., 2006 ; Laurier et al.,

2001)
I A case-control study in Denmark (Raaschou-Nielsen et al., 2008) BUT

limited statistical power (Little et al., 2010)

Positive association between exposure to TGR and directly ionizing cosmic
radiation and childhood leukemia incidence

I A sufficient size case control study in the UK (Kendall et al., 2013)

↪→ Quantitative Risk Assessment applied in Great Britain : 15 to 20% of
leukemia cases might potentially be attributable to NBR over childhood (from
0 to 14 years old) (Little et al., 2009 ; Wakeford et al., 2009)
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Data on the target population

Childhood acute leukemia incidence rates in metropolitan France by sex and
mean attained age (0-14 years old), period 1990-2004 (French National
Registry of Childhood Blood Malignancies (INSERM − RNHE))

6784 childhood leukemia cases recorded in France during the study period
(around 250 cases per year among males and 202 among females)
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Data on the target population (2)

Average red bone marrow doses (in mSv) received by fetuses, infants and
children from radon, terrestrial gamma rays and cosmic rays in France
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Data on the evidentiary population

Mortality dataset from the latest Life Span Study (LSS)
cohort (provided by the Radiation Effects Research
Foundation, Hiroshima, Japan )

I 86, 611 survivors of the atomic bombings of Hiroshima and
Nagasaki over period 1950-2000

I By the end of 2000, 284 had died from leukemia
I Stratified data by city, sex, age at exposure, weighted

colon dose category (in Sv), attained age, calendar time
period . . . 7−→ 31, 422 strata

I For each stratum :

• Number of deaths due to leukemia
• Number of person-years at risk
• PY−weighted average age at exposure
• PY−weighted average attained age
• Estimated stratum-average RBM doses (in Sv) corresponding

to the most recent dosimetric system available for the cohort
(DS02, established in 2002)
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Radiation-related leukemia excess risk models : global feature

Additive and Multiplicative risk models

Let Yi be the number of leukemia deaths and PYRi the associated number of
persons-years at risk in stratum i of the LSS data .

Yi ∼ Poisson(PYRi × λLSS
tot,i )

λLSS
tot,i =

{
λLSS

0,ξ (si , ci , ai , ei )+EAR(di , si , ci , ai , ei )
λLSS

0,ξ (si , ci , ai , ei )×(1 + ERR(di , si , ci , ai , ei ))

ERR/EAR(di , si , ci , ai , ei ) = (αdi + βd2
i )exp(γdi )ωµ(si , ci , ai , ei )

λLSS
0,ξ (si , ci , ai , ei ) is the LSS baseline risk in the absence of exposure

EAR is the Excess Absolute Risk / ERR is the Excess Relative Risk

Constraints must be assigned to the vector θ of unknown parameters

21 / 48



Context Motivating Case Study Method Results Discussion

Considered radiation-related leukemia excess risk models

↪→ 10 Poisson-disease models sharing common features have been found in the
literature.

ERR models Np EAR models Np
ERR.UNSCEAR (2006) 10 EAR.UNSCEAR (2006) 11

ERR.Little (2008) 11
ERR.Littleexp (2008) 12 EAR.Littleexp (2008) 12
ERR.BEIR7 (2006) 20 EAR.BEIR7 (2006) 19

EAR.Schneider (2009) 13
EAR.Schneiderexp (2009) 14

EAR.Preston (2004) 23
Np= Number of parameters
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How to assess the proportion of cases attributable to NBR in
France ?

In case of ERR transfer from the evidentiary population to the target
population :

hF
tot [s, a, e,DNR(e)] = hF

0 (s, a) +
a−2∑
e=0.5

hF
0 (s, a)ERR(s, a, e,DNR(e))

APNBR [s, a, e,DNR(e)] =

∑a−2
e=0.5 ERR(s, a, e,DNR(e))

1 +
∑a−2

e=0.5 ERR(s, a, e,DNR(e))

In case of EAR transfer from the evidentiary population to the target
population :

hF
tot [s, a, e,DNR(e)] = hF

0 (s, a) +
a−2∑
e=0.5

EAR(s, a, e,DNR(e))

APNBR [s, a, e,DNR(e)] =

∑a−2
e=0.5 EAR(s, a, e,DNR(e))

hF
tot [s, a, e,DNR(e)]

Remark : Risk-free period (lag) of 2 years following exposure
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Bayesian Model Averaging

Let Mk (k = 1, . . . ,K) be the K competing risk models considered, each
one defined by a set of parameters θk . Let ∆ be a quantity of interest
(e.g., the percentage of leukemia cases attributable to NBR) to
estimate/predict. One main equation :

[∆|y ] =
K∑

k=1

[∆(θk)|y ,Mk ]ωk

where ωk is the posterior probability for model Mk given data y :

ωk = [Mk |y ] =
[y |Mk ][Mk ]∑K
l=1[y |Ml ][Ml ]

Remark : Relies on the assumption that ∆(θk) is transferrable across
models
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Importance Sampling : Why ?

First tested approach :

[∆(θk)|y ,Mk ] sampled using MCMC algorithms implemented in
OpenBUGS

MLk := [y |Mk ] estimated using posterior-guided Importance Sampling (IS)

M̂Lk =
1

N

N∑
i=1

[
y |θ(i)

k ,Mk

] [θ(i)
k |Mk

]
g
(
θ

(i)
k

) θ
(i)
k ∼

i.i.d g(θ
(i)
k )

IS function g : We propose a product of univariate scaled noncentral
Students distributions fitted to the posterior samples.

Due to high within-chain autocorrelations and large dataset (≥ 30 000
observations), approach is very computationally expensive ! (≈ 2 days per
model)

↪→ Importance sampling enables to sample from posterior distribution and
compute marginal likelihood all at once !
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Importance Sampling : How ?

For each model Mk :

1 Choose importance distribution g(θk) as a ‘good’ approximation of
[θk |y ,Mk ]

↪→ Following Liu (2001), we use a multivariate Student distribution centered at

MLE θ̂k , with df = 30 and covariance matrix equal to inverse observed

Fisher Information I(θ̂k )−1

2 Draw N i.i.d. realizations θ
(i)
k from g . Let : w̃

(i)
k =

[
y|θ(i)

k
,Mk

][
θ

(i)
k
|Mk

]
g
(
θ

(i)
k

) be the

non-normalized importance weights

3 Estimate marginal likelihood (without bias) as : M̂Lk = 1
N

∑N
i=1 w̃

(i)
k , and

any posterior expectation E[∆(θk)|y ,Mk ] by

Ê[∆(θk)|y ,Mk ] =

∑N
i=1 w̃

(i)
k ∆(θ

(i)
k )∑N

i=1 w̃
(i)
k
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Importance Sampling Resampling

Posterior distribution [θ
(i)
k |y ,Mk ] is approximated by :

∑N
i=1 w̃

(i)
k
δ
θ

(i)
k∑N

i=1 w̃
(i)
k

, where

δ
θ

(i)
k

is the Dirac mass in θ
(i)
k

↪→ Approximate posterior sample can be obtained by resampling the θ
(i)
k with

probability w
(i)
k =

w̃
(i)
k∑n

j=1 w̃
(j)
k

(normalized importance weight)

Quality of the importance sampling algorithm can be monitored by :

I Equivalent Sample Size (Liu, 2001 ; Del Moral, 2004) :

ESS =

(
N∑
i=1

w
(i)
k

2
)−1

I Approximate weight variation coefficient (Oh and Berger, 1989) :

cv =
var(w̃k )

Nmean(w̃k )2
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Adaptive Importance sampling

In practice, choosing a ‘good’ importance distribution g(θk) is a key issue

Idea : Run Importance sampling iteratively to continually update g(θk)

Following (Oh and Berger, 1989), we perform the following steps :

1 Set t = 0 and define :

g (0)(θk ) = MVT
(
θk |θ̂k , I(θ̂k )−1, df = df (0)

)
Then :

2 Draw N = 500 i.i.d. realizations θ
(i)
k,t from g (t) and associated weights w̃

(i)
k,t .

Compute the corresponding ESS and cv values : ESSt , cvt .

3 If t ≥ 1 and ESSt < ESSt−1, discard weighted sample (θ
(i)
k,t , w̃

(i)
k,t) and

repeat previous step.
While ESSt < 10 000 and cvt > 2.6 10−5 :

4 Increment t = t + 1. Define

g (t)(θk ) = MVT
(
θk |Ê(t)[θk |y ,Mk ], V̂(t)[θk |y ,Mk ], df = df (t)

)
,

where
(
Ê(t)[θk |y ,Mk ], V̂(t)[θk |y ,Mk ], df (t)

)
is fitted to the pooled posterior

weighted sample. Then, go back to step 2
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Simple vs. Adaptive IS : ERR models

Mk N ESS cv log M̂Lk prec. Type of IS

ERR.UNSCEAR 100 000 52 847 9.0 10−6 0.012 Simple
10 500 8 319 2.5. 10−5 0.020 Adaptive

ERR.Little 100 000 53 931 9.0 10−6 0.011 Simple
14 500 10 534 2.6 10−5 0.020 Adaptive

ERR.Littleexp 100 000 7 495 1.2 10−4 0.004 Simple
25 500 10 190 5.9 10−5 0.030 Adaptive

ERR.BEIR7 100 000 16 6.3 10−2 1.079 Simple
63 841 10 492 8.0 10−5 0.035 Adaptive

Adaptive IS reaches a stable precision over models, with much less
particles then simple IS

However, keep in mind that many importance draws have been discarded
in the adaptive scheme
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Simple vs. Adaptive IS : EAR models

Mk N ESS cv log M̂Lk prec. Type of IS

EAR.BEIR7 100 000 71 1.4 10−2 0.475 Simple
75 500 10 030 8.6 10−5 0.036 Adaptive

EAR.Littleexp 100 000 252 4.0 10−3 0.248 Simple
49 500 10 140 7.8 10−5 0.035 Adaptive

EAR.Preston 100 000 111 9.0 10−3 0.376 Simple
101 500 10 031 9.0 10−5 0.037 Adaptive

EAR.Schneider 100 000 51 421 9.0 10−6 0.012 Simple
17 000 11 904 2.5 10−5 0.020 Adaptive

EAR.Schneiderexp 100 000 262 3.8 10−3 0.243 Simple
66 000 24 427 2.6 10−5 0.020 Adaptive

EAR.UNSCEAR 100 000 40 814 1.5 10−5 0.015 Simple
14 500 10 085 3.0 10−5 0.022 Adaptive
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Convergence Issues : EAR.Preston
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Fisher Info matrix is singular : ε added to diagonal before inversion

↪→ results in grossly overestimated variances and correlations
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Convergence Issues : EAR.Preston model (contd)

40000 50000 60000 70000 80000 90000 100000

log(1/S)

Sorted Log Importance Normalized Weights

sorted log of normalized importance weights for simple Importance
sampling

As a result of overdispersed, overcorrelated importance distribution,
unbalanced weights, with many zeros
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Convergence Issues : EAR.Preston model (contd)
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unbalanced weights result in spikes and noisy aspect of posterior
approximation
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Adaptive IS : EAR.Preston model

0 20000 40000 60000 80000 100000 120000

log(1/S)
Sorted Log Importance Normalized Weights

sorted log of normalized importance weights for adaptive importance
sampling

As a result of adaptation and filtering, importance weights are much less
dispersed
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Adaptive IS : EAR.Preston model (contd)
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Histogram of particles resampled according to importance weights

much better posterior approximation, reveals skewed marginals for certain
parameters
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AIC vs. BIC vs. posterior probabilities

Mk AIC BIC p(Mk |y)
ERR.UNSCEAR 0.608 1.0 0.988
ERR.Little 0.126 0.0 0.011
ERR.Littleexp 0.259 0.0 0.001
ERR.BEIR7 0.0 0.0 0.0
EAR.BEIR7 0.0 0.0 0.0
EAR.Littleexp 0.0 0.0 0.0
EAR.Preston 0.0 0.0 0.0
EAR.Schneider 0.004 0.0 0.0
EAR.Schneiderexp 0.003 0.0 0.0
EAR.UNSCEAR 0.0 0.0 0.001

AIC BIC p(Mk |y)
0.612 1.0 0.988
0.127 0.0 0.011
0.261 0.0 0.001
0.0 0.0 0.0
0.0 0.0 0.0
0.009 0.0 0.0
0.0 0.0 0.0
0.572 0.0 0.0
0.396 0.0 0.0
0.023 1.0 1.0

Left : Weights normalized over all models

Right : Weights normalized over ERR and EAR models separately
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ERR vs. EAR models

Mk AIC BIC p(Mk |y)
ERR.UNSCEAR 1.0 1.0 0.999
EAR.UNSCEAR 0.0 0.0 0.001
ERR.BEIR7 0.179 0.0 0.0
EAR.BEIR7 0.821 1.0 1.0
ERR.Little 0.999 0.999 0.948
EAR.UNSCEAR 0.001 0.001 0.052
ERR.Littleexp 1.0 1.0 1.0
EAR.Littleexp 0.0 0.0 0.0

as expected, ERR models strongly outperform EAR models. . .

. . . except for BEIR7 models. . .

. . . which however have zero global weights compared to the other models !
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Posterior predictive medians (in blue) and associated 95% credible
intervals (in grey) of the percentage of cases of childhood leukemia
over period 1990-2004 in metropolitan France for the 10 models
Female, Total exposure to NBR
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Posterior predictive medians (in blue) and associated 95% credible
intervals (in grey) of the percentage of cases of childhood leukemia
over period 1990-2004 in metropolitan France for the 10 models
Male, Total exposure to NBR
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BMA vs. MMI vs. BIC averaging estimates of the percentage of
cases of childhood leukemia over period 1990-2004 in metropolitan
France for French women by attained age [0-14 years-old]
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BMA vs. MMI vs. BIC averaging estimates of the percentage of
cases of childhood leukemia over period 1990-2004 in metropolitan
France for French men by attained age [0-14 years-old]
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Model-averaged percentages (and 95% CI) of cases of childhood
leukemia potentially attributable to radon, terrestrial gamma and
cosmic rays over period 1990-2004 in metropolitan France and over
childhood (from 0 to 14 years old)
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Conclusions (1)

Point predictions suggest that a sizeable proportion ( 20%) of childhood
leukemia cases might be attributable to radon, TGR and cosmic rays in
France

I So far, consistent with UK findings (Wakeford et al 2009)
I BUT 95% credible intervals for predictions appear to be very large

(95%CI=[0,68])
I Results only valable provided that radiation-related leukemia risk models

can be transferred

−→ Point predictions must be interpreted cautiously !

Usual risk models uncertainty may be ignored to predict radiation-related
childhood leukemia rates in a current population from LSS data −→
UNSCEAR 2006 ERR model strongly recommended

−→ Still no way to validate risk prediction for childhood leukemia due to
NBR : Data acquisition in progress in France.
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Conclusions (2)

A first approach to Bayesian model averaging for quantitative
radiation-related cancer risk assessment.

A novel filtered adaptative Importance sampling approach based on
multivariate Student proposals with varying degrees of freedom.

Our approach allows to perform Bayesian inference and exact Bayesian
model averaging for 10 radiation-induced leukemia risk models with many
correlated parameters in a reasonable time frame.

BUT

Convergence of our adaptive sampling scheme is not guaranteed

For three models, our adaptive sampling scheme is not optimal
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Perspectives

Improve our adaptive sampling scheme (e.g., using non-central
multivariate Student to account for skewed posterior marginals)

Compare the strengths and weaknesses of the Bayesian Model Averaging
and frequentist multimodel inference proposed by Burnham & Anderson
(2004)
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