Context 00000000000	Motivating Case Study	Method 00000	Results 00000000000000	Discussion
Prom l'évalu	nouvoir le Bayesian ation quantitative o Application à	Model Averag du risque de ca à la leucémie in	ing pour amélioren ncers radio-induits fantile	5.

Sophie Ancelet¹, Merlin Keller² En collaboration avec : Olivier Laurent¹, Denis Hémon³, Géraldine lelsch¹, Jacqueline Clavel³, Dominique Laurier¹

> ¹Institut de Radioprotection et de Sureté Nucléaire, Fontenay-aux-Roses ²EDF R&D, Chatou ³INSERM, CESP 1018, Villejuif

> > AppliBUGS, 20 Juin 2013

Context 00000000000	Motivating Case Study	Method 00000	Results	Discussion
Outline				

2 Motivating Case Study

Context	Motivating Case Study	Method	Results	Discussion

1 Context

2 Motivating Case Study

3 Method

4 Results

Context ●○○○○○○○○○	Motivating Case Study	Method 00000	Results	Discussion
Epidemiology	of ionizing radiation			

• All people are exposed to ionizing radiation (IR)

- Epidemiology of IR = Study of the stochastical effects of IR
 - Non-specific late effects with dose-dependent occurrence
 - Cancer diseases (solid, leukemia), cardiovascular diseases, cataract,...
 - Observational science (cohort studies, case-control studies) : confusing factors, bias, missing data, extrapolations from one population to another...

An important topic for radiation protection...

- At acute, medium-to-high level, external exposure to IR, excess risk of leukemia, breast, lung and thyroid cancer are clearly demonstrated
- The excess risk of cancer diseases increases with the dose

RSN

• Latency minimal period from a few years to decades

5/48

May chronic exposure to low doses rate of IR result in adverse health effects?

Only a few results at low doses rates of IR :

- Lung cancer following radon inhalation (Darby et al., 2005; IARC, 2001)
- Excess risk of leukemia among children exposed in-utero (>10 mSv)
- BUT mixed findings for other potential health effects at doses <100 mSv.

Context ○○●○○○○○○○○	Motivating Case Study	Method 00000	Results 000000000000000000000000000000000000	Discussion
Limits of a	current epidemiologi	cal studies		

- Latency minimal period from IR exposure to cancer occurrence from a few years to decades
- Suboptimal designs (bias, non-observed confusing factors, ...)

 \rightarrow Lack of statistical power to detect some potential small health effects of IR at low dose rates

Additional well-designed epidemiological studies are on progress BUT :

- Years to decades of observations required to reach an adequate statistical power to detect such potential health impacts
- Some quicker replies are legitimately called on the expected magnitude of a potential risk !
- \rightarrow Alternative approach : Quantitative Risk Assessment (QRA) (NRC, 2009)

Quantitativo	assessment of ra	diation related r	sk : Overview	
000000000				
Context	Motivating Case Study	Method	Results	Discussion

Step 1 : Building one (several) probabilistic model(s) to describe the risk-exposure/dose-effect relationship of interest.

Step 2 : Fitting the proposed model(s) to data observed in the so-called *evidentiary population*.

Step 3 : Predicting some health impact indicators in a so-called *target population* (e.g., years of life lost, lifetime excess cancer deaths, attributable risk proportion,...) from some dose estimations and the information provided by the *evidentiary population*.

- In practice, the Life Span Study (LSS) of Hiroshima and Nagasaki A-bomb survivors is used as the *evidentiary* population.
 - Main basis for setting international radiation protection standards (ICRP 2007)
 - ➤ The WHO report "Health Risk Assessment from the nuclear accident after the 2011 Great East Japan Earthquake and Tsunami based on preliminary dose estimation" (28/02/2013, avalaible online)

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

 Context
 Motivating Case Study
 Method
 Results
 Discussion

 Quantitative assessment of radiation-related risk : Some
 methodological limits
 Discussion
 Discussion

Many statistical models describe the evolution over time of the Excess Relative or Absolute Risk (ERR or EAR) of cancer due to IR from LSS but usual practice of QRA ignores :

Model selection uncertainty

- Walsh & Kaiser (2012) examine the impact of combining models for radiation-related leukemia risks assessments
- They have followed an influential work by Burnham & Anderson, (1998, 2004) \longrightarrow a frequentist model-averaging procedure based on AIC weights
- Considered as an objective basis for multimodel inference in many fields like epidemiology, biology and ecology (Zhang and Townsend (2009); Burnham et al. (2011); Walsh and Schneider (2013))

- Let M_k (k = 1,..., K) be K competing risk models considered, each one defined by a set of parameters θ_k. and Δ be a quantity of interest to estimate/predict and y the observed data.
- A model-averaged estimator of Δ is given by :

$$\widehat{\Delta} = \sum_{k=1}^{K} \widehat{\Delta_k} \omega_k$$

where ω_k (k=1,...,K) are the Akaike weights defined by :

$$\omega_k = \frac{exp(-0.5(\triangle AIC_k))}{\sum_{j=1}^{K} exp(-0.5(\triangle AIC_j))}$$

where

$$AIC_k = -2log[y|\theta_k] + 2p_k \qquad n >> p_k$$
$$\triangle AIC_k = AIC_k - AIC_{\min}$$

Burnham & Anderson (2004) propose the following Bayesian interpretation of the AIC weights.

Let π_k be the prior probability placed on model M_k . Then the posterior probability for model M_k given data y is :

$$[M_k|y] \simeq rac{exp(-0.5(riangle BIC_k))\pi_k}{\sum_{j=1}^{K}exp(-0.5(riangle BIC_j))\pi_j}$$

If the model prior probability π_k are proportional to

$$exp(0.5(\triangle BIC_k)exp(-0.5(\triangle AIC_k)$$

then

$$[M_k|y] \simeq rac{exp(-0.5(riangle AIC_k))}{\sum_{j=1}^{K} exp(-0.5(riangle AIC_j))} = \omega_k$$

13/48

"...traditional Bayesian thinking about the prior distribution on models has been that π_k , k=1,...K would also not depend on n or p_k . This approach is **IRS** theither necessary nor reasonable." (Burnham & Anderson (2004))

Context	Motivating Case Study	Method	Results	Discussion
0000000000				
Aim of the wo	ork			

Investigate the use of Bayesian Model Averaging (BMA) to account for model and parameters uncertainties in cancer risk assessments due to ${\sf IR}$

Context	Motivating Case Study	Method	Results	Discussion

1 Context

2 Motivating Case Study

3 Method

4 Results

- Natural Background Radiation (NBR) constitutes the major source of exposure to chronic IR for most of the world population (UNSCEAR, 2008)
- Three components contribute to 90% of the effective dose delivered
 - Radon gas (222Rn and 220Rn) and its decay products
 - Terrestrial gamma rays (TGR)
 - High energy cosmic ray particle

NBR & childhood leukemia : Why is it an important topic?

- During childhood, equivalent dose received by the red bone marrow (RBM) ranging from a few to several tens of mSv!!!
- Childhood leukemia
 - Relevant health indicator when studying the effects of NBR
 - Most strongly associated with exposure to external whole-body irradiation

edf

16/48

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

- Children more radiosensitive than adults (NRC, 2006)
- Childhood leukemia = the most frequent cancer in children but whose etiology remains widely unknown (Eden, 2010)

- Positive association between radon exposure and leukemia incidence
 - Some, though not all, ecological studies (Evrard et al., 2006; Laurier et al., 2001)
 - A case-control study in Denmark (Raaschou-Nielsen et al., 2008) BUT limited statistical power (Little et al., 2010)
- Positive association between exposure to TGR and directly ionizing cosmic radiation and childhood leukemia incidence
 - A sufficient size case control study in the UK (Kendall et al., 2013)

 \hookrightarrow Quantitative Risk Assessment applied in Great Britain : 15 to 20% of leukemia cases might potentially be attributable to NBR over childhood (from 0 to 14 years old) (Little et al., 2009; Wakeford et al., 2009)

Childhood acute leukemia incidence rates in metropolitan France by sex and mean attained age (0-14 years old), period 1990-2004 (French National Registry of Childhood Blood Malignancies (INSERM – RNHE))

6784 childhood leukemia cases recorded in France during the study period (around 250 cases per year among males and 202 among females)

Context	Motivating Case Study	Method	Results	Discussion
	0000000			
Data on the t	arget population (2)			

Average red bone marrow doses (in mSv) received by fetuses, infants and children from radon, terrestrial gamma rays and cosmic rays in France

	Radon	Terrestrial gamma rays	Cosmic rays	All 3 exposures together
In utero (9 month)	0.03 a	0.33 c	0.19°	0.55
Infant (first year of life ^e)	0.29 ^b	0.61 d	0.35 d	1.24
Child (yearly ^f)	0.34 ^b	0.55 d	0.31 d	1.21
Cumulated (in utero - 12.5 years)	<mark>4,4</mark> 0	7,54	4,26	16,31
% of cumulated dose (in both cases)	27	46	26	100

Context	Motivating Case Study	Method	Results	Discussion
00000000000	○○○○●○○	00000		000
Radiation-re	elated leukemia exo	cess risk models	: global feature	

Additive and Multiplicative risk models

Let Y_i be the number of leukemia deaths and PYR_i the associated number of persons-years at risk in stratum i of the LSS data .

$$Y_i \sim \text{Poisson}(PYR_i \times \lambda_{tot,i}^{LSS})$$

$$\lambda_{tot,i}^{LSS} = \begin{cases} \lambda_{0,\xi}^{LSS}(s_i, c_i, a_i, e_i) + EAR(d_i, s_i, c_i, a_i, e_i) \\ \lambda_{0,\xi}^{LSS}(s_i, c_i, a_i, e_i) \times (1 + ERR(d_i, s_i, c_i, a_i, e_i)) \end{cases}$$

・ロト ・雪 ト ・ヨ ト ・ ヨ ト

21/48

 $ERR/EAR(d_i, s_i, c_i, a_i, e_i) = (\alpha d_i + \beta d_i^2) exp(\gamma d_i) \omega_{\mu}(s_i, c_i, a_i, e_i)$

- $\lambda_{0,\xi}^{LSS}(s_i, c_i, a_i, e_i)$ is the LSS baseline risk in the absence of exposure
- EAR is the Excess Absolute Risk / ERR is the Excess Relative Risk
- $\bullet\,$ Constraints must be assigned to the vector θ of unknown parameters

Context	Motivating Case Study ○○○○○○●○	Method 00000	Results	Discussion
Considered ra	diation related loukon	in avcass risk	modols	

 \hookrightarrow 10 Poisson-disease models sharing common features have been found in the literature.

ERR models	Np	EAR models	Np
ERR.UNSCEAR (2006)	10	EAR.UNSCEAR (2006)	11
ERR.Little (2008)	11		
ERR.Littleexp (2008)	12	EAR.Littleexp (2008)	12
ERR.BEIR7 (2006)	20	EAR.BEIR7 (2006)	19
		EAR.Schneider (2009)	13
		EAR.Schneiderexp (2009)	14
		EAR Preston (2004)	23

Np= Number of parameters

In case of ERR transfer from the evidentiary population to the target population :

$$h_{tot}^{F}[s, a, e, DNR(e)] = h_{0}^{F}(s, a) + \sum_{e=0.5}^{a-2} h_{0}^{F}(s, a) ERR(s, a, e, DNR(e))$$
$$AP_{NBR}[s, a, e, DNR(e)] = \frac{\sum_{e=0.5}^{a-2} ERR(s, a, e, DNR(e))}{1 + \sum_{e=0.5}^{a-2} ERR(s, a, e, DNR(e))}$$

In case of EAR transfer from the evidentiary population to the target population :

$$h_{tot}^{F}[s, a, e, DNR(e)] = h_{0}^{F}(s, a) + \sum_{e=0.5}^{a-2} EAR(s, a, e, DNR(e))$$
$$AP_{NBR}[s, a, e, DNR(e)] = \frac{\sum_{e=0.5}^{a-2} EAR(s, a, e, DNR(e))}{h_{tot}^{F}[s, a, e, DNR(e)]}$$
hark : Risk-free period (lag) of 2 years following exposure

Context	Motivating Case Study	Method	Results	Discussion
0000000000	0000000	00000	00000000000000	000
				·

Context

2 Motivating Case Study

3 Method

4 Results

5 Discussion

Context	Motivating Case Study	Method ●○○○○	Results 00000000000000	Discussion
Bayesian Mod	el Averaging			

Let M_k (k = 1,..., K) be the K competing risk models considered, each one defined by a set of parameters θ_k. Let Δ be a quantity of interest (e.g., the percentage of leukemia cases attributable to NBR) to estimate/predict. One main equation :

$$[\Delta|y] = \sum_{k=1}^{K} [\Delta(\theta_k)|y, M_k] \omega_k$$

where ω_k is the posterior probability for model M_k given data y :

$$\omega_{k} = [M_{k}|y] = \frac{[y|M_{k}][M_{k}]}{\sum_{i=1}^{K} [y|M_{i}][M_{i}]}$$

(D) (B) (E) (E)

• **Remark** : Relies on the assumption that $\Delta(\theta_k)$ is *transferrable* across models

Context 00000000000	Motivating Case Study	Method ○●○○○	Results	Discussion
Importance Sa	ampling : Why?			

First tested approach :

- $[\Delta(\theta_k)|y, M_k]$ sampled using MCMC algorithms implemented in OpenBUGS
- $ML_k := [y|M_k]$ estimated using posterior-guided Importance Sampling (IS)

$$\widehat{ML_k} = \frac{1}{N} \sum_{i=1}^{N} \left[y | \theta_k^{(i)}, M_k \right] \frac{\left[\theta_k^{(i)} | M_k \right]}{g\left(\theta_k^{(i)} \right)} \qquad \theta_k^{(i)} \sim^{i.i.d} g(\theta_k^{(i)})$$

IS function g: We propose a product of univariate scaled noncentral Students distributions fitted to the posterior samples.

• Due to high within-chain autocorrelations and large dataset (\geq 30 000 observations), approach is very computationally expensive! (\approx 2 days per model)

26/48

→ Importance sampling enables to sample from posterior distribution and compute marginal likelihood all at once !

Context 00000000000	Motivating Case Study	Method ○○●○○	Results	Discussion
Importance Sa	ampling : How ?			

For each model M_k :

- Choose importance distribution g(θ_k) as a 'good' approximation of [θ_k|y, M_k]
 - \hookrightarrow Following Liu (2001), we use a multivariate Student distribution centered at MLE $\hat{\theta}_k$, with df = 30 and covariance matrix equal to inverse observed Fisher Information $\mathcal{I}(\hat{\theta}_k)^{-1}$

2 Draw *N i.i.d.* realizations
$$\theta_k^{(i)}$$
 from *g*. Let : $\tilde{w}_k^{(i)} = \frac{\left|y|\theta_k^{(i)}, M_k\right|\left|\theta_k^{(i)}\right|M_k\right|}{g(\theta_k^{(i)})}$ be the non-normalized importance weights

3 Estimate marginal likelihood (without bias) as : $\widehat{ML}_k = \frac{1}{N} \sum_{i=1}^{N} \widetilde{w}_k^{(i)}$, and any posterior expectation $\mathbb{E}[\Delta(\theta_k)|y, M_k]$ by

$$\widehat{\mathbb{E}}[\Delta(\theta_k)|y, M_k] = \frac{\sum_{i=1}^{N} \widetilde{w}_k^{(i)} \Delta(\theta_k^{(i)})}{\sum_{i=1}^{N} \widetilde{w}_k^{(i)}}$$

・ロ・ ・ 雪 ・ ・ ヨ ・ ・ ヨ ・

2

- Posterior distribution $[\theta_k^{(i)}|y, M_k]$ is approximated by : $\frac{\sum_{i=1}^N \tilde{w}_k^{(i)} \delta_{\theta_k^{(i)}}}{\sum_{i=1}^N \tilde{w}_k^{(i)}}$, where $\delta_{\theta_k^{(i)}}$ is the Dirac mass in $\theta_k^{(i)}$
- $\stackrel{\hookrightarrow}{\to} \text{Approximate posterior sample can be obtained by resampling the } \theta_k^{(i)} \text{ with } \\ \text{probability } w_k^{(i)} = \frac{\tilde{w}_k^{(i)}}{\sum_{j=1}^n \tilde{w}_k^{(j)}} \text{ (normalized importance weight)}$
 - Quality of the importance sampling algorithm can be monitored by :
 - Equivalent Sample Size (Liu, 2001; Del Moral, 2004) :

$$ESS = \left(\sum_{i=1}^{N} w_k^{(i)^2}\right)^{-1}$$

1

イロマ イロマ イロマ

28/48

Approximate weight variation coefficient (Oh and Berger, 1989) :

$$cv = rac{\operatorname{var}(ilde{w}_k)}{N \operatorname{mean}(ilde{w}_k)^2}$$

Context	Motivating Case Study	Method	Results	Discussion
		00000		
Adaptive In	portance sampling			

- In practice, choosing a 'good' importance distribution $g(\theta_k)$ is a key issue
- Idea : Run Importance sampling iteratively to continually update $g(\theta_k)$
- Following (Oh and Berger, 1989), we perform the following steps :

1 Set t = 0 and define :

$$g^{(0)}(heta_k) = ext{MVT}\left(heta_k | \widehat{ heta}_k, \mathcal{I}(\widehat{ heta}_k)^{-1}, df = df^{(0)}
ight)$$

Then :

- Oraw N = 500 *i.i.d.* realizations \u03c8⁽ⁱ⁾_{k,t} from g^(t) and associated weights \u03c8⁽ⁱ⁾_{k,t}. Compute the corresponding ESS and cv values : ESS_t, cv_t.
- If $t \ge 1$ and $ESS_t < ESS_{t-1}$, discard weighted sample $(\theta_{k,t}^{(i)}, \tilde{w}_{k,t}^{(i)})$ and repeat previous step. While $ESS_t < 10\,000$ and $cv_t > 2.6\,10^{-5}$:
- Increment t = t + 1. Define

$$g^{(t)}(\theta_k) = \text{MVT}\left(\theta_k | \widehat{\mathbb{E}}^{(t)}[\theta_k | y, M_k], \widehat{\mathbb{V}}^{(t)}[\theta_k | y, M_k], df = df^{(t)}\right),$$

where $\left(\widehat{\mathbb{E}}^{(t)}[\theta_k|y, M_k], \widehat{\mathbb{V}}^{(t)}[\theta_k|y, M_k], df^{(t)}\right)$ is fitted to the pooled posterior weighted sample. Then, go back to step 2

・ロト ・ 日 ト ・ 日 ト ・ 日

Context	Motivating Case Study	Method	Results	Discussion

Context

2 Motivating Case Study

3 Method

Context	Motivating Case Study	Method	Results	Discussion
			0000000000000	
<u>.</u>				

Simple vs. Adaptive IS : ERR models

M_k	N	ESS	cv	$\log \widehat{ML}_k$ prec.	Type of IS
ERR.UNSCEAR	100 000	52 847	9.010^{-6}	0.012	Simple
	10 500	8 319	$2.5.10^{-5}$	0.020	Adaptive
ERR.Little	100 000	53931	9.010^{-6}	0.011	Simple
	14 500	10534	2.610^{-5}	0.020	Adaptive
ERR.Littleexp	100 000	7 495	1.210^{-4}	0.004	Simple
	25 500	10 190	5.910^{-5}	0.030	Adaptive
ERR.BEIR7	100 000	16	6.310^{-2}	1.079	Simple
	63 841	10 492	8.010^{-5}	0.035	Adaptive

- Adaptive IS reaches a stable precision over models, with much less particles then simple IS
- However, keep in mind that many importance draws have been discarded in the adaptive scheme

Context	Motivating Case Study	Method	Results	Discussion
			000000000000000000000000000000000000000	

Simple vs. Adaptive IS : EAR models

M_k	N	ESS	сv	$\log \widehat{ML}_k$ prec.	Type of IS
EAR.BEIR7	100 000	71	1.410^{-2}	0.475	Simple
	75 500	10030	8.610^{-5}	0.036	Adaptive
EAR.Littleexp	100 000	252	4.010^{-3}	0.248	Simple
	49 500	10140	7.810^{-5}	0.035	Adaptive
EAR.Preston	100 000	111	9.010^{-3}	0.376	Simple
	101 500	10031	9.010^{-5}	0.037	Adaptive
EAR.Schneider	100 000	51 421	9.010^{-6}	0.012	Simple
	17 000	11904	2.510^{-5}	0.020	Adaptive
EAR.Schneiderexp	100 000	262	3.810^{-3}	0.243	Simple
	66 000	24 427	2.610^{-5}	0.020	Adaptive
EAR.UNSCEAR	100 000	40814	1.510^{-5}	0.015	Simple
	14 500	10 085	3.010^{-5}	0.022	Adaptive

Convergence Issues : EAR.Preston

- left : Inverse of observed Fisher Information matrix
- right : Posterior distribution correlation matrix

IRSN

- \bullet Fisher Info matrix is singular : ϵ added to diagonal before inversion
- \rightarrow results in grossly overestimated variances and correlations

- sorted log of normalized importance weights for simple Importance sampling
- As a result of overdispersed, overcorrelated importance distribution, unbalanced weights, with many zeros

Histogram of particles resampled according to importance weights

edf

35 / 48

 unbalanced weights result in spikes and noisy aspect of posterior approximation

- sorted log of normalized importance weights for adaptive importance sampling
- As a result of adaptation and filtering, importance weights are much less dispersed

- Histogram of particles resampled according to importance weights
- much better posterior approximation, reveals skewed marginals for certain
 parameters

Context	Motivating Case Study	Method	Discussion
AIC vs. BIC v	s. posterior probabi	lities	

M_k	AIC	BIC	$p(M_k y)$	AIC	BIC	$p(M_k y)$
ERR.UNSCEAR	0.608	1.0	0.988	0.612	1.0	0.988
ERR.Little	0.126	0.0	0.011	0.127	0.0	0.011
ERR.Littleexp	0.259	0.0	0.001	0.261	0.0	0.001
ERR.BEIR7	0.0	0.0	0.0	0.0	0.0	0.0
EAR.BEIR7	0.0	0.0	0.0	0.0	0.0	0.0
EAR.Littleexp	0.0	0.0	0.0	0.009	0.0	0.0
EAR.Preston	0.0	0.0	0.0	0.0	0.0	0.0
EAR.Schneider	0.004	0.0	0.0	0.572	0.0	0.0
EAR.Schneiderexp	0.003	0.0	0.0	0.396	0.0	0.0
EAR.UNSCEAR	0.0	0.0	0.001	0.023	1.0	1.0

- Left : Weights normalized over all models
- Right : Weights normalized over ERR and EAR models separately

Context	Motivating Case Study	Method 00000	Results ○○○○○○○●○○○○○	Discussion
ERR vs. EAR	models			

M_k	AIC	BIC	$p(M_k y)$
ERR.UNSCEAR	1.0	1.0	0.999
EAR.UNSCEAR	0.0	0.0	0.001
ERR.BEIR7	0.179	0.0	0.0
EAR.BEIR7	0.821	1.0	1.0
ERR.Little	0.999	0.999	0.948
EAR.UNSCEAR	0.001	0.001	0.052
ERR.Littleexp	1.0	1.0	1.0
EAR.Littleexp	0.0	0.0	0.0

- as expected, ERR models strongly outperform EAR models...
- ... except for BEIR7 models...
- ... which however have zero global weights compared to the other models !

ContextMetivating Case StudyMethodResultsDiscussionPosterior predictive medians (in blue) and associated 95% credibleintervals (in grey) of the percentage of cases of childhood leukemiaover period 1990-2004 in metropolitan France for the 10 modelsFemale, Total exposure to NBR

ContextMetivating Case StudyMetivating Case StudyMetivating Case StudyMetivating Case StudyDiscussionPosterior predictive medians (in blue) and associated 95% credibleintervals (in grey) of the percentage of cases of childhood leukemiaover period 1990-2004 in metropolitan France for the 10 modelsMale, Total exposure to NBR

		terrestrial		all 3 exposures	
Components of natural radiation	Radon	gamma rays	cosmic rays	together	
Males					
% of attributable cases					
Posterior predictive					
median)	5.5	11.3	6.9	20.5	
95% CI	(0-36.1)	(0-53.6)	(0 -42.0)	(0 - 67.6)	
Females					
% of attributable cases					
Posterior predictive median	5.3	11.4	6.9	20.4	
95% CI	(0-36.2)	(0-54.6)	(0-43.2)	(0-68.0)	
		4			

Context	Motivating Case Study	Method	Results	Discussion
0000000000	0000000	00000	00000000000000	000

Context

2 Motivating Case Study

3 Method

4 Results

Context	Motivating Case Study	Method 00000	Results 00000000000000	Discussion ●○○
Conclusions (1)			

- Point predictions suggest that a sizeable proportion (20%) of childhood leukemia cases might be attributable to radon, TGR and cosmic rays in France
 - So far, consistent with UK findings (Wakeford et al 2009)
 - BUT 95% credible intervals for predictions appear to be very large (95%CI=[0,68])
 - Results only valable provided that radiation-related leukemia risk models can be transferred
- \longrightarrow Point predictions must be interpreted cautiously !
 - Usual risk models uncertainty may be ignored to predict radiation-related childhood leukemia rates in a current population from LSS data → UNSCEAR 2006 ERR model strongly recommended

・ロン ・回 と ・ ヨン ・ ヨン

46 / 48

 \longrightarrow Still no way to validate risk prediction for childhood leukemia due to NBR : Data acquisition in progress in France.

Context 00000000000	Motivating Case Study	Method 00000	Results	Discussion ○●○
Conclusions (2)			

- A first approach to Bayesian model averaging for quantitative radiation-related cancer risk assessment.
- A novel filtered adaptative Importance sampling approach based on multivariate Student proposals with varying degrees of freedom.
- Our approach allows to perform Bayesian inference and exact Bayesian model averaging for 10 radiation-induced leukemia risk models with many correlated parameters in a reasonable time frame.

・ロン ・回 と ・ ヨン ・ ヨン

47 / 48

BUT

- Convergence of our adaptive sampling scheme is not guaranteed
- For three models, our adaptive sampling scheme is not optimal

Context	Motivating Case Study	Method	Results	Discussion
Perspectives		00000	000000000000000000000000000000000000000	000

- Improve our adaptive sampling scheme (e.g., using non-central multivariate Student to account for skewed posterior marginals)
- Compare the strengths and weaknesses of the Bayesian Model Averaging and frequentist multimodel inference proposed by Burnham & Anderson (2004)

