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Fundamental setting

Is the new parameter supported by the observations or is
any variation expressible by it better interpreted as
random? Thus we must set two hypotheses for
comparison, the more complicated having the smaller
initial probability (Jeffreys, ToP, V, §5.0)

...compare a specially suggested value of a new
parameter, often 0 [q], with the aggregate of other
possible values [q′]. We shall call q the null hypothesis
and q′ the alternative hypothesis [and] we must take

P(q|H) = P(q′|H) = 1/2 .



Construction of Bayes tests

Definition (Test)

Given an hypothesis H0 : θ ∈ Θ0 on the parameter θ ∈ Θ0 of a
statistical model, a test is a statistical procedure that takes its
values in {0, 1}.



Type–one and type–two errors

Associated with the risk

R(θ, δ) = Eθ[aL(θ, δ(x))]

=

{
Pθ(δ(x) = 0) if θ ∈ Θ0,

Pθ(δ(x) = 1) otherwise,

Theorem (Bayes test)

The Bayes estimator associated with π and with the 0 − 1 loss is

δπ(x) =

{
1 if P(θ ∈ Θ0|x) > P(θ 6∈ Θ0|x),

0 otherwise,
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Jeffreys’ example (§5.0)

Testing whether the mean α of a normal observation is zero:

P(q|aH) ∝ exp

(
−

a2

2s2

)
P(q′dα|aH) ∝ exp

(
−
(a − α)2

2s2

)
f (α)dα

P(q′|aH) ∝
∫

exp

(
−
(a − α)2

2s2

)
f (α)dα



A (small) point of contention

Jeffreys asserts

Suppose that there is one old parameter α; the new
parameter is β and is 0 on q. In q′ we could replace α by
α′, any function of α and β: but to make it explicit that
q′ reduces to q when β = 0 we shall require that α′ = α
when β = 0 (V, §5.0).

This amounts to assume identical parameters in both models, a
controversial principle for model choice or at the very best to make
α and β dependent a priori, a choice contradicted by the next
paragraph in ToP



A (small) point of contention

Jeffreys asserts

Suppose that there is one old parameter α; the new
parameter is β and is 0 on q. In q′ we could replace α by
α′, any function of α and β: but to make it explicit that
q′ reduces to q when β = 0 we shall require that α′ = α
when β = 0 (V, §5.0).

This amounts to assume identical parameters in both models, a
controversial principle for model choice or at the very best to make
α and β dependent a priori, a choice contradicted by the next
paragraph in ToP



Orthogonal parameters

If

I (α,β) =

[
gαα 0

0 gββ

]
,

α and β orthogonal, but not [a posteriori] independent, contrary to
ToP assertions

...the result will be nearly independent on previous
information on old parameters (V, §5.01).

and

K =
1

f (b, a)

√
ngββ
2π

exp

(
−

1

2
ngββb2

)
[where] h(α) is irrelevant (V, §5.01)
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Acknowledgement in ToP

In practice it is rather unusual for a set of parameters to
arise in such a way that each can be treated as irrelevant
to the presence of any other. More usual cases are (...)
where some parameters are so closely associated that one
could hardly occur without the others (V, §5.04).



Generalisation

Theorem (Optimal Bayes decision)

Under the 0 − 1 loss function

L(θ, d) =


0 if d = IΘ0(θ)

a0 if d = 1 and θ 6∈ Θ0

a1 if d = 0 and θ ∈ Θ0

the Bayes procedure is

δπ(x) =

{
1 if Prπ(θ ∈ Θ0|x) > a0/(a0 + a1)

0 otherwise
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Bound comparison

Determination of a0/a1 depends on consequences of “wrong
decision” under both circumstances
Often difficult to assess in practice and replacement with “golden”
default bounds like .05, biased towards H0
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A function of posterior probabilities

Definition (Bayes factors)

For hypotheses H0 : θ ∈ Θ0 vs. Ha : θ 6∈ Θ0

B01 =
π(Θ0|x)

π(Θc
0|x)

/
π(Θ0)

π(Θc
0)

=

∫
Θ0

f (x |θ)π0(θ)dθ∫
Θc

0

f (x |θ)π1(θ)dθ

[Good, 1958 & ToP, V, §5.01]

Equivalent to Bayes rule: acceptance if

B01 > {(1 − π(Θ0))/a1}/{π(Θ0)/a0}



A major modification

When the null hypothesis is supported by a set of measure 0
against Lebesgue measure, π(Θ0) = 0 for an absolutely continuous
prior distribution

[End of the story?!]

Suppose we are considering whether a location parameter
α is 0. The estimation prior probability for it is uniform
and we should have to take f (α) = 0 and K [= B10]
would always be infinite (V, §5.02)
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Point null refurbishment

Requirement

Defined prior distributions under both assumptions,

π0(θ) ∝ π(θ)IΘ0(θ), π1(θ) ∝ π(θ)IΘ1(θ),

(under the standard dominating measures on Θ0 and Θ1)

Using the prior probabilities π(Θ0) = ρ0 and π(Θ1) = ρ1,

π(θ) = ρ0π0(θ) + ρ1π1(θ).

Note If Θ0 = {θ0}, π0 is the Dirac mass in θ0
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Point null hypotheses

Particular case H0 : θ = θ0
Take ρ0 = Prπ(θ = θ0) and g1 prior density under Ha.
Posterior probability of H0

π(Θ0|x) =
f (x |θ0)ρ0∫

f (x |θ)π(θ) dθ
=

f (x |θ0)ρ0
f (x |θ0)ρ0 + (1 − ρ0)m1(x)

and marginal under Ha

m1(x) =

∫
Θ1

f (x |θ)g1(θ) dθ.
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Point null hypotheses (cont’d)

Dual representation

π(Θ0|x) =

[
1 +

1 − ρ0
ρ0

m1(x)

f (x |θ0)

]−1

.

and

Bπ
01(x) =

f (x |θ0)ρ0
m1(x)(1 − ρ0)

/
ρ0

1 − ρ0
=

f (x |θ0)

m1(x)

Connection

π(Θ0|x) =

[
1 +

1 − ρ0
ρ0

1

Bπ
01(x)

]−1

.
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A further difficulty

Improper priors are not allowed here

If ∫
Θ1

π1(dθ1) =∞ or

∫
Θ2

π2(dθ2) =∞
then π1 or π2 cannot be coherently normalised while the
normalisation matters in the Bayes factor remember Bayes factor?
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ToP unaware of the problem?

A. Not entirely, as improper priors keep being used on nuisance
parameters

Example of testing for a zero normal mean:

If σ is the standard error and λ the true value, λ is 0 on
q. We want a suitable form for its prior on q′. (...) Then
we should take

P(qdσ|H) ∝ dσ/σ

P(q′dσdλ|H) ∝ f

(
λ

σ

)
dσ/σdλ/λ

where f [is a true density] (V, §5.2).

Fallacy of the “same” σ!
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Not enought information

If s ′ = 0 [!!!], then [for σ = |x̄ |/τ, λ = σv]

P(q|θH) ∝
∫∞
0

(
τ

|x̄ |

)n

exp

(
−

1

2
nτ2
)

dτ

τ
,

P(q′|θH) ∝
∫∞
0

dτ

τ

∫∞
−∞

(
τ

|x̄ |

)n

f (v) exp

(
−

1

2
n(v − τ)2

)
.

If n = 1 and f (v) is any even [density],

P(q′|θH) ∝ 1

2

√
2π

|x̄ |
and P(q|θH) ∝ 1

2

√
2π

|x̄ |

and therefore K = 1 (V, §5.2).



Strange constraints

If n > 2, the condition that K = 0 for s ′ = 0, x̄ 6= 0 is
equivalent to ∫∞

0
f (v)vn−1dv =∞ .

The function satisfying this condition for [all] n is

f (v) =
1

π(1 + v2)

This is the prior recommended by Jeffreys hereafter.
But, first, many other families of densities satisfy this constraint
and a scale of 1 cannot be universal!
Second, s ′ = 0 is a zero probability event...
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Comments

I ToP very imprecise about choice of priors in the setting of
tests (despite existence of Susie’s Jeffreys’ conventional partly
proper priors)

I ToP misses the difficulty of improper priors [coherent with
earlier stance]

I but this problem still generates debates within the B
community

I Some degree of goodness-of-fit testing but against fixed
alternatives

I Persistence of the form

K ≈
√
πn

2

(
1 +

t2

ν

)−1/2ν+1/2

but ν not so clearly defined...
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Lindley’s paradox

In a normal mean testing problem,

x̄n ∼ N(θ,σ2/n) , H0 : θ = θ0 ,

under Jeffreys prior, θ ∼ N(θ0,σ
2), the Bayes factor

B01(tn) = (1 + n)1/2 exp
(
−nt2n/2[1 + n]

)
,

where tn =
√

n|x̄n − θ0|/σ, satisfies

B01(tn)
n−→∞−→ ∞

[assuming a fixed tn]
[Lindley, 1957]



Lindley’s paradox

Often dubbed Jeffreys–Lindley paradox...

In terms of

t =
√

n − 1x̄/s ′, ν = n−1

K ∼

√
πν

2

(
1 +

t2

ν

)−1/2ν+1/2

.

(...) The variation of K with t
is much more important than
the variation with ν (Jeffreys,
V, §5.2).



Two versions of the paradox

“the weight of Lindley’s paradoxical result (...) burdens
proponents of the Bayesian practice”.

[Lad, 2003]

I official version, opposing frequentist and Bayesian assessments
[Lindley, 1957]

I intra-Bayesian version, blaming vague and improper priors for
the Bayes factor misbehaviour:
if π1(·|σ) depends on a scale parameter σ, it is often the case
that

B01(x)
σ−→∞−→ +∞

for a given x , meaning H0 is always accepted
[Robert, 1992, 2013]



where does it matter?

In the normal case, Z ∼ N(θ, 1), θ ∼ N(0,α2), Bayes factor

B10(z) =
ez

2α2/(1+α2)

√
1 + α2

=
√

1 − λ exp{λz2/2}



Evacuation of the first version

Two paradigms [(b) versus (f)]

I one (b) operates on the parameter space Θ, while the other
(f) is produced from the sample space

I one (f) relies solely on the point-null hypothesis H0 and the
corresponding sampling distribution, while the other
(b) opposes H0 to a (predictive) marginal version of H1

I one (f) could reject “a hypothesis that may be true (...)
because it has not predicted observable results that have not
occurred” (Jeffreys, ToP, VII, §7.2) while the other
(b) conditions upon the observed value xobs

I one (f) cannot agree with the likelihood principle, while the
other (b) is almost uniformly in agreement with it

I one (f) resorts to an arbitrary fixed bound α on the p-value,
while the other (b) refers to the (default) boundary probability
of 1/2



More arguments on the first version

I observing a constant tn as n increases is of limited interest:
under H0 tn has limiting N(0, 1) distribution, while, under H1

tn a.s. converges to ∞
I behaviour that remains entirely compatible with the

consistency of the Bayes factor, which a.s. converges either to
0 or ∞, depending on which hypothesis is true.

Consequent subsequent literature (e.g., Berger & Sellke, 1987;
Bayarri & Berger, 2004) has since then shown how divergent those
two approaches could be (to the point of being asymptotically
incompatible).



Nothing’s wrong with the second version

I n, prior’s scale factor: prior variance n times larger than the
observation variance and when n goes to ∞, Bayes factor
goes to ∞ no matter what the observation is

I n becomes what Lindley (1957) calls “a measure of lack of
conviction about the null hypothesis”

I when prior diffuseness under H1 increases, only relevant
information becomes that θ could be equal to θ0, and this
overwhelms any evidence to the contrary contained in the data

I mass of the prior distribution in the vicinity of any fixed
neighbourhood of the null hypothesis vanishes to zero under
H1

c© deep coherence in the outcome: being indecisive about
the alternative hypothesis means we should not chose it
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“Who should be afraid of the Lindley–Jeffreys paradox?”

Recent publication by A. Spanos with above title:

I the paradox demonstrates against
Bayesian and likelihood resolutions of the
problem for failing to account for the
large sample size.

I the failure of all three main paradigms
(“fallacy of rejection” for (f) versus
“fallacy of acceptance” for (b)) leads to
advocate Mayo’s and Spanos’ (2004)
“postdata severity evaluation”

[Spanos, 2013]



“Who should be afraid of the Lindley–Jeffreys paradox?”

Recent publication by A. Spanos with above title:

“the postdata severity evaluation
(...) addresses the key problem with
Fisherian p-values in the sense that
the severity evaluation provides the
“magnitude” of the warranted
discrepancy from the null by taking
into account the generic capacity of
the test (that includes n) in question
as it relates to the observed
data”(p.88)

[Spanos, 2013]



what is severity?

“An hypothesis H passes a severe test if the data agrees
with H and if it is highly probable that data not produced
under H agrees less with H”

I departure from the null, rewritten as θ1 = θ0 + γ,

I “provide the ‘magnitude’ of the warranted discrepancy from
the null”, i.e. decide about how close (in distance) to the null
we can get and still be able to discriminate the null from the
alternative hypotheses “with very high probability”

I requires to set the “severity threshold”,

Pθ1{d(X) 6 d(x0)}

I once γ found, whether it is far enough from the null is a
matter of informed opinion: whether it is “substantially
significant (...) pertains to the substantive subject matter”



...should we be afraid?

A. Not! In Spanos (2013)

I the purpose of a test and the nature of
evidence are never spelled out

I the rejection of decisional aspects clashes
with the later call to the magnitude of the
severity

I does not quantify how to select
significance thresholds γ against sample
size n

I contains irrelevant attacks on the
likelihood principle and dependence on
Euclidean distance

[Robert, 2013]



On some resolutions of the second version

I use of pseudo-Bayes factors, fractional Bayes factors, &tc,
which lacks complete proper Bayesian justification

[Berger & Pericchi, 2001]

I use of identical improper priors on nuisance parameters,

I use of the posterior predictive distribution,

I matching priors,

I use of score functions extending the log score function

I non-local priors correcting default priors



On some resolutions of the second version

I use of pseudo-Bayes factors, fractional Bayes factors, &tc,

I use of identical improper priors on nuisance parameters, a
notion already entertained by Jeffreys

[Berger et al., 1998; Marin & Robert, 2013]

I use of the posterior predictive distribution,

I matching priors,

I use of score functions extending the log score function

I non-local priors correcting default priors



On some resolutions of the second version

I use of pseudo-Bayes factors, fractional Bayes factors, &tc,

I use of identical improper priors on nuisance parameters,

I Péché de jeunesse: equating the values of the prior densities
at the point-null value θ0,

ρ0 = (1 − ρ0)π1(θ0)

[Robert, 1993]

I use of the posterior predictive distribution,

I matching priors,

I use of score functions extending the log score function

I non-local priors correcting default priors
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I use of the posterior predictive distribution, which uses the
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On some resolutions of the second version

I use of pseudo-Bayes factors, fractional Bayes factors, &tc,

I use of identical improper priors on nuisance parameters,

I use of the posterior predictive distribution,

I matching priors, whose sole purpose is to bring frequentist
and Bayesian coverages as close as possible

[Datta & Mukerjee, 2004]

I use of score functions extending the log score function

I non-local priors correcting default priors



On some resolutions of the second version

I use of pseudo-Bayes factors, fractional Bayes factors, &tc,

I use of identical improper priors on nuisance parameters,

I use of the posterior predictive distribution,

I matching priors,

I use of score functions extending the log score function

logB12(x) = log m1(x) − log m2(x) = S0(x , m1) − S0(x , m2) ,

that are independent of the normalising constant
[Dawid et al., 2013]

I non-local priors correcting default priors



On some resolutions of the second version

I use of pseudo-Bayes factors, fractional Bayes factors, &tc,

I use of identical improper priors on nuisance parameters,

I use of the posterior predictive distribution,

I matching priors,

I use of score functions extending the log score function

I non-local priors correcting default priors towards more
balanced error rates

[Johnson & Rossell, 2010; Consonni et al., 2013]



Deviance (information criterion)

Significance tests: one new parameter

Jeffreys-Lindley paradox

Deviance (information criterion)

Aitkin’s integrated likelihood

Johnson’s uniformly most powerful
Bayesian tests

Posterior predictive checking



DIC as in Dayesian?

Deviance defined by

D(θ) = −2 log(p(y|θ)) ,

Effective number of parameters computed as

pD = D̄ − D(θ̄) ,

with D̄ posterior expectation of D and θ̄ estimate of θ
Deviance information criterion (DIC) defined by

DIC = pD + D̄

= D(θ̄) + 2pD

Models with smaller DIC better supported by the data
[Spiegelhalter et al., 2002]



“thou shalt not use the data twice”

The data is used twice in the DIC method:

1. y used once to produce the posterior π(θ|y), and the
associated estimate, θ̃(y)

2. y used a second time to compute the posterior expectation
of the observed likelihood p(y |θ),∫

log p(y |θ)π(dθ|y) ∝
∫

log p(y |θ)p(y |θ)π(dθ) ,



DIC for missing data models

Framework of missing data models

f (y|θ) =

∫
f (y, z|θ)dz ,

with observed data y = (y1, . . . , yn) and corresponding missing
data by z = (z1, . . . , zn)

How do we define DIC in such settings?
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how many DICs can you fit in a mixture?

Q: How many giraffes can you fit in a VW bug?
A: None, the elephants are in there.

1. observed DICs

DIC1 = −4Eθ [log f (y|θ)|y] + 2 log f (y|Eθ [θ|y])

often a poor choice in case of unidentifiability

2. complete DICs based on f (y, z|θ)

3. conditional DICs based on f (y|z, θ)

[Celeux et al., BA, 2006]
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A: None, the elephants are in there.

1. observed DICs

DIC2 = −4Eθ [log f (y|θ)|y] + 2 log f (y|θ̂(y)) .

which uses posterior mode instead

2. complete DICs based on f (y, z|θ)

3. conditional DICs based on f (y|z, θ)

[Celeux et al., BA, 2006]



how many DICs can you fit in a mixture?

Q: How many giraffes can you fit in a VW bug?
A: None, the elephants are in there.

1. observed DICs

DIC3 = −4Eθ [log f (y|θ)|y] + 2 log f̂ (y) ,

which instead relies on the MCMC density estimate

2. complete DICs based on f (y, z|θ)

3. conditional DICs based on f (y|z, θ)

[Celeux et al., BA, 2006]
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Q: How many giraffes can you fit in a VW bug?
A: None, the elephants are in there.

1. observed DICs

2. complete DICs based on f (y, z|θ)

DIC6 = −4Eθ,Z [log f (y,Z|θ)|y]+2EZ[log f (y,Z|θ̂(y))|y, θ̂(y)] .

in analogy with EM, θ̂ being an EM fixed point

3. conditional DICs based on f (y|z, θ)
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how many DICs can you fit in a mixture?

Q: How many giraffes can you fit in a VW bug?
A: None, the elephants are in there.

1. observed DICs

2. complete DICs based on f (y, z|θ)

3. conditional DICs based on f (y|z, θ)

DIC7 = −4Eθ,Z [log f (y|Z, θ)|y] + 2 log f (y|ẑ(y), θ̂(y)) ,

using MAP estimates

[Celeux et al., BA, 2006]



how many DICs can you fit in a mixture?

Q: How many giraffes can you fit in a VW bug?
A: None, the elephants are in there.

1. observed DICs

2. complete DICs based on f (y, z|θ)

3. conditional DICs based on f (y|z, θ)

DIC8 = −4Eθ,Z [log f (y|Z, θ)|y]+2EZ

[
log f (y|Z, θ̂(y,Z))|y

]
,

conditioning first on Z and then integrating over Z
conditional on y

[Celeux et al., BA, 2006]



Galactic DICs

Example of the galaxy mixture dataset

DIC2 DIC3 DIC4 DIC5 DIC6 DIC7 DIC8
K (pD2) (pD3) (pD4) (pD5) (pD6) (pD7) (pD8)
2 453 451 502 705 501 417 410

(5.56) (3.66) (5.50) (207.88) (4.48) (11.07) (4.09)
3 440 436 461 622 471 378 372

(9.23) (4.94) (6.40) (167.28) (15.80) (13.59) (7.43)
4 446 439 473 649 482 388 382

(11.58) (5.41) (7.52) (183.48) (16.51) (17.47) (11.37)
5 447 442 485 658 511 395 390

(10.80) (5.48) (7.58) (180.73) (33.29) (20.00) (15.15)
6 449 444 494 676 532 407 398

(11.26) (5.49) (8.49) (191.10) (46.83) (28.23) (19.34)
7 460 446 508 700 571 425 409

(19.26) (5.83) (8.93) (200.35) (71.26) (40.51) (24.57)



questions

I what is the behaviour of DIC under model mispecification?

I is there an absolute scale to the DIC values, i.e. when is a
difference in DICs significant?

I how can DIC handle small n’s versus p’s?

I should pD be defined as var(D |y)/2 [Gelman’s suggestion]?

I is WAIC (Gelman and Vehtari, 2013) making a difference for
being based on expected posterior predictive?

In an era of complex models, is DIC applicable?
[Robert, 2013]
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Aitkin’s integrated likelihood

Significance tests: one new parameter

Jeffreys-Lindley paradox

Deviance (information criterion)

Aitkin’s integrated likelihood
Integrated likelihood
Criticisms
A Bayesian version?

Johnson’s uniformly most powerful
Bayesian tests

Posterior predictive checking



Integrated likelihood

Statistical Inference: An Integrated
Bayesian/Likelihood Approach was
published by Murray Aitkin in 2009

Theme: comparisons of posterior
distributions of likelihood functions
under competing models or via the
posterior distribution of likelihood ratios
corresponding to those models...
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Bayesian/Likelihood Approach was
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Theme: comparisons of posterior
distributions of likelihood functions
under competing models or via the
posterior distribution of likelihood ratios
corresponding to those models...



Posterior likelihood

“This quite small change to standard Bayesian analysis
allows a very general approach to a wide range of
apparently different inference problems; a particular
advantage of the approach is that it can use the same
noninformative priors.” Statistical Inference, p.xiii

Central tool: “posterior cdf” of the likelihood,

F (z) = Prπ(L(θ, x) > z |x) .

Arguments:

I general approach that resolves difficulties with the Bayesian
processing of point null hypotheses

I includes use of generic noninformative and improper priors

I handles the “vexed question of model fit”
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Using the data twice [again!]

“A persistent criticism of the posterior likelihood
approach (. . . ) has been based on the claim that these
approaches are ‘using the data twice,’ or are ‘violating
temporal coherence’.” Statistical Inference, p.48

I “posterior expectation” of the likelihood as ratio of marginal
of twice-replicated data over marginal of original data,

E[L(θ, x)|x ] =

∫
L(θ, x)π(θ|x) dθ =

m(x , x)

m(x)
,

[Aitkin, 1991]
I the likelihood function does not exist a priori
I requires a joint distribution across models to be compared
I connection with pseudo-priors (Carlin & Chib, 1995) who

defined prior distributions on the parameters that do not exist
I fails to include improper priors since (θ, x) has no joint

distribution
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Posterior probability on posterior probabilities

“The p-value is equal to the posterior probability that the
likelihood ratio, for null hypothesis to alternative, is
greater than 1 (. . . ) The posterior probability is p that
the posterior probability of H0 is greater than 0.5.”
Statistical Inference, pp.42–43

c© A posterior probability being a number, how can its posterior
probability be defined?

While

m(x) =

∫
L(θ, x)π(θ) dθ = Eπ[L(θ, x)]

is well-defined, it does not mean the whole distribution of L(θ, x)
makes sense!
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Drifting apart

fundamental theoretical argument: integrated likelihood leads to
parallel and separate simulations from the posteriors under each
model, considering distribution of

Li (θi |x)

/
Lk(θk |x),

when θi ’s and θk ’s drawn from respective posteriors
[see also Scott, 2002; Congdon, 2006]
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parallel and separate simulations from the posteriors under each
model, considering distribution of

Li (θi |x)

/
Lk(θk |x),

when θi ’s and θk ’s drawn from respective posteriors
[see also Scott, 2002; Congdon, 2006]

MCMC simulations run for each model separately and resulting
MCMC samples gathered together to produce posterior distribution
of

ρiL(θi |x)

/∑
k

ρkL(θk |x) ,

which do not correspond to genuine Bayesian solutions
[Robert and Marin, 2008]



Drifting apart

fundamental theoretical argument: integrated likelihood leads to
parallel and separate simulations from the posteriors under each
model, considering distribution of

Li (θi |x)

/
Lk(θk |x),

when θi ’s and θk ’s drawn from respective posteriors
[see also Scott, 2002; Congdon, 2006]

c© the product of the posteriors π1(θ1|y
n)π2(θ2|y

n) is not the
posterior of the product π(θ1, θ2|y

n), as in

p1m1(x)π1(θ1|x)π2(θ2) + p2m2(x)π2(θ2|x)π1(θ1).

[Carlin & Chib, 1995]



An illustration

Comparison of the distribution of the likelihood ratio under (a)
true joint posterior and (b) product of posteriors, when assessing
fit of a Poisson against binomial model with m = 5 trials, for the
observation x = 3

Marginal simulation

log likelihood ratio

−4 −2 0 2

Joint simulation

log likelihood ratio

−15 −10 −5 0



Appropriate loss function

Estimation loss for model index j , the values of the parameters
under both models and observation x :

L(δ, (j , θj , θ−j)) = Iδ=1If2(x |θ2)>f1(x |θ1) + Iδ=2If2(x |θ2)<f1(x |θ1)

(δ = j means model j is chosen, and fj(.|θj) denotes likelihood
under model j)

Under this loss, Bayes (optimal) solution

δπ(x) =

{
1 if Prπ(f2(x |θ2) < f1(x |θ1)|x) >

1
2

2 otherwise,

depends on joint posterior distribution on (θ1, θ2), thus differs
from Aitkin’s solution.
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Asymptotic properties

If M1 is “true” model, then π(M1|x
n) = 1 + op(1) and

Prπ1(l1(θ1) > l2(θ2)|x
n, θ2) = Pr(−X2

p1 > l2(θ2) − l2(θ̂1)) + Op(1/
√

n)

= Fp1(l
1(θ̂1) − l2(θ2)) + Op(1/

√
n) ,

with p1 dimension of Θ1, θ̂1 maximum likelihood estimator of θ1
Since l2(θ2) 6 l2(θ̂2),

l1(θ̂1) − l2(θ2) > nKL(f0, fθ∗2 ) + Op(
√

n) ,

where KL(f , g) Kullback-Leibler divergence and
θ∗2 = argminθ2KL(f0, fθ2), we have

Prπ(f (xn|θ2) < f (xn|θ1)|x
n) = 1 + op(1) .

Aitkin’s approach leads to

Pr[X2
p2 − X2

p1 > l2(θ̂2) − l1(θ̂1)],

thus depends on the asymptotic behavior of the likelihood ratio
[Gelman, Robert & Rousseau, 2012]
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Uniformly most powerful tests

“The difficulty in constructing a Bayesian hypothesis test
arises from the requirement to specify an alternative
hypothesis.”

Johnson’s 2013 paper in the Annals of Statistics introduces so
called uniformly most powerful Bayesian tests, relating to the
original Neyman’s and Pearson’s uniformly most powerful tests:

arg max
δ

Pθ (δ = 0) , θ ∈ Θ1

under the constraint

Pθ (δ = 0) 6 α, θ ∈ Θ0



definition

“UMPBTs provide a new form of default, nonsubjective
Bayesian tests in which the alternative hypothesis is
determined so as to maximize the probability that a
Bayes factor exceeds a specified threshold”

i.e., find prior π1 on Θ1 (alternative parameter space) to maximise

Pθ (B10(X ) > γ) ,

for all θ ∈ Θ1

...assuming “the null hypothesis is rejected if the posterior
probability of H1 exceeds a certain threshold”

[Johnson, 2013]
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Examples

Example (normal mean one-sided H0 : µ = µ0)

H1 point mass at

µ1 = µ0 + σ
√

2 logγ/n

and Bayes factor

B10(z) = exp{z
√

2 logγ− logγ}

[Johnson, PNAS, 2013]



Examples

“Up to a constant factor that arises from the uniform distribution
on µ...”

Example (normal mean two-sample two-sided H0 : δµ = 0)

H1 point mass at

δµ = σ
√

2(n1 + n2) logγ/n1n2

and Bayes factor

B10(z) = exp{z
√

2 logγ− logγ}

[Johnson, PNAS, 2013]



Examples

Example (non-central chi-square H0 : λ = 0)

H1 point mass at λ∗ minimum of

1√
λ

log
(

eλ/2γ+
√

eλγ2 − 1
)

and Bayes factor

B10(x) = exp{−λ∗/2} cosh(
√
λ∗x)

[Johnson, PNAS, 2013]



Examples

Example (binomial probability one-sided H0 : p = p0)

H1 point mass at p∗ minimum of

logγ− n[log(1 − p) − log(1 − p0)]

log[p/(1 − p)] − log[p0/(1 − p0)]

and Bayes factor

B10(x) = (p∗/p0)
x((1 − p∗)/(1 − p0))

n−x

[Johnson, PNAS, 2013]



Criticisms

I means selecting the least favourable prior under H1 so that frequentist
probability of exceeding a threshold is uniformly maximal, in a minimax
perspective

I requires frequentist averaging over all possible values of the observation
(violates the Likelihood Principle)

I compares probabilities for all values of the parameter θ rather than
integrating against a prior or posterior

I selects a prior under H1 with sole purpose of favouring the alternative,
meaning it has no further use when H0 is rejected

I caters to non-Bayesian approaches: Bayesian tools as supplementing
p-values

I argues the method is objective because it satisfies a frequentist coverage

I very rarely exists, apart from one-dimensional exponential families

I extensions lead to data-dependent local alternatives



An impossibility theorem?

“Unfortunately, subjective Bayesian testing procedures
have not been–and will likely never be–generally accepted
by the scientific community. In most testing problems,
the range of scientific opinion regarding the magnitude of
violations from a standard theory is simply too large to
make the report of a single, subjective Bayes factor
worthwhile. Furthermore, scientific journals have
demonstrated an unwillingness to replace the report of a
single p-value with a range of subjectively determined
Bayes factors or posterior model probabilities.”

[Bye, everyone!]



Criticisms (2)

I use of alien notion of a “true” prior density (p.6) that would
be misspecified, corresponding to “a point mass concentrated
on the true value” for frequentists and to the summary of
prior information for Bayesians, “not available”.

I why compare probability of rejection of H0 in favour of H1 for
every value of θ when (a) a prior on H1 is used to define the
Bayes factor, (b) conditioning on the data is lost, (c) the
boundary or threshold γ is fixed, and (d) induced order is
incomplete

I prior behind UMPB tests quite likely to be atomic, while
natural dominating measure is Lebesgue

I those tests are not [NP] uniformly most powerful unless one
picks a new definition of UMP tests.

I strange asymptotics: under the null

log(B10(X1:n)) ≈ N(− logγ, 2 logγ)



goodness-of-fit?

“...the tangible consequence of a Bayesian hypothesis
test is often the rejection of one hypothesis in favor of
the second (...) It is therefore of some practical interest
to determine alternative hypotheses that maximize the
probability that the Bayes factor from a test exceeds a
specified threshold”.

The definition of the alternative hypothesis is paramount:
replacing genuine alternative H1 with one spawned by the null H0

voids the appeal of B approach, turning testing into a
goodness-of-fit assessment



goodness-of-fit?

The definition of the alternative hypothesis is paramount:
replacing genuine alternative H1 with one spawned by the null H0

voids the appeal of B approach, turning testing into a
goodness-of-fit assessment
why would we look for the alternative that is most against H0? See
Spanos’ (2013) objection of many alternative values of θ more
likely than the null. This does not make them of particular interest
or bound to support an alternative prior...



which threshold?

“The posterior probability of the null hypothesis does not
converge to 1 as the sample size grows. The null
hypothesis is never fully accepted–nor the alternative
rejected–when the evidence threshold is held constant as
n increases.”

I notion of abstract and fixed threshold γ linked with
Jeffreys-Lindley paradox

I assuming a golden number like 3 (b) is no less arbitrary than
using 0.05 or 5σ as significance bound (f)

I even NP perspective on tests relies on decreasing (in n) Type
I error types of error decreasing with n

I in fine, γ determined by inverting classical bound 0.05 or
0.005



which threshold?

The “behavior of UMPBTs with fixed evidence thresholds
is similar to the Jeffreys-Lindley paradox”

Aspect jeopardises whole construct of UMPB tests, which depend
on an arbitrary γ, unconnected with a loss function and orthogonal
to any prior information



O’Bayes, anyone?

“...defining a Bayes factor requires the specification of
both a null hypothesis and an alternative hypothesis, and
in many circumstances there is no objective mechanism
for defining an alternative hypothesis. The definition of
the alternative hypothesis therefore involves an element
of subjectivity, and it is for this reason that scientists
generally eschew the Bayesian approach toward
hypothesis testing.

c© Notion that is purely frequentist, using Bayes factors as the
statistic instead of another divergence statistic, with no objective
Bayes features and no added value



O’Bayes, anyone?

“The simultaneous report of default Bayes factors and
p-values may play a pivotal role in dispelling the
perception held by many scientists that a p-value of 0.05
corresponds to “significant” evidence against the null
hypothesis (...) the report of Bayes factors based upon
[UMPBTs] may lead to more realistic interpretations of
evidence obtained from scientific studies.”

c© Notion that is purely frequentist, using Bayes factors as the
statistic instead of another divergence statistic, with no objective
Bayes features and no added value



PNAS paper

“To correct this [lack of reproducibility] problem, evidence
thresholds required for the declaration of a significant
finding should be increased to 25–50:1, and to 100–200:1
for the declaration of a highly significant finding.”

Johnson’s (2013b) recycled UMPB tests received much attention
from the media for its simplistic message: move from the 0.05
significance bound to the 0.005 bound and hence reduce the
non-reproducible research outcome

[Johnson, 2013b]



new arguments

I default Bayesian procedures

I rejection regions can be matched to classical rejection regions

I provide evidence in “favor of both true null and true
alternative hypotheses”

I “provides insight into the amount of evidence required to
reject a null hypothesis”

I adopt level 0.005 as “P values of 0.005 correspond to Bayes
factors around 50”



new criticisms

I dodges the essential nature of any such automated rule, that
it expresses a tradeoff between the risks of publishing
misleading results and of important results being left
unpublished. Such decisions should depend on costs, benefits,
and probabilities of all outcomes.

I minimax alternative prior not intended to correspond to any
distribution of effect sizes, solely worst-case scenario not
accounting for a balance between two different losses

I threshold chosen relative to conventional value, e.g. Jeffreys’
target Bayes factor of 1/25 or 1/50, for which there is no
particular justification

I had Fisher chosen p = 0.005, Johnson could have argued
about its failure to correspond to 200:1 evidence against the
null! This γ = 0.005 turns into z =

√
−2 log(0.005) = 3.86,

and a (one-sided) tail probability of Φ(−3.86) ≈ 0.0005, with
no better or worse justification

[Gelman & Robert, 2013]
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Bayesian predictive

“If the model fits, then replicated data generated under
the model should look similar to observed data. To put it
another way, the observed data should look plausible
under the posterior predictive distribution. This is really a
self-consistency check: an observed discrepancy can be
due to model misfit or chance.” (BDA, p.143)

Use of posterior predictive

p(y rep|y) =

∫
p(y rep|θ)π(θ|y) dθ

and measure of discrepancy T (·, ·)
Replacing p-value

p(y |θ) = P(T (y rep, θ) > T (y , θ)|θ)

with Bayesian posterior p-value

P(T (y rep, θ) > T (y , θ)|y) =

∫
p(y |θ)π(θ|x) dθ
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Issues

“the posterior predictive p-value is such a [Bayesian]
probability statement, conditional on the model and data,
about what might be expected in future replications.
(BDA, p.151)

I sounds too much like a p-value...!

I relies on choice of T (·, ·)
I seems to favour overfitting

I (again) using the data twice (once for the posterior and twice
in the p-value)

I needs to be calibrated (back to 0.05?)

I general difficulty in interpreting

I where is the penalty for model complexity?



Example

Normal-normal mean model:
X ∼ N(θ, 1) , θ ∼ N(0, 10)

Bayesian posterior p-value for
T (x) = x2, m(x),B10(x)

−1∫
P(|X | > |x ||θ, x)π(θ|x) dθ



Example

Normal-normal mean model:
X ∼ N(θ, 1) , θ ∼ N(0, 10)

Bayesian posterior p-value for
T (x) = x2, m(x),B10(x)

−1∫
P(|X | > |x ||θ, x)π(θ|x) dθ

which interpretation?
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Example

Normal-normal mean model:
X ∼ N(θ, 1) , θ ∼ N(0, 10)

Bayesian posterior p-value for
T (x) = x2, m(x),B10(x)

−1∫
P(|X | > |x ||θ, x)π(θ|x) dθ

gets down as x gets away from 0...
while discrepancy based on B10(x)
increases mildly
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goodness-of-fit [only?]

“A model is suspect if a discrepancy is of practical importance and
its observed value has a tail-area probability near 0 or 1, indicating
that the observed pattern would be unlikely to be seen in
replications of the data if the model were true. An extreme p-value
implies that the model cannot be expected to capture this aspect of
the data. A p-value is a posterior probability and can therefore be
interpreted directly—although not as Pr(model is true — data).
Major failures of the model (...) can be addressed by expanding the
model appropriately.” BDA, p.150

I not helpful in comparing models (both may be deficient)

I anti-Ockham? i.e., may favour larger dimensions (if prior
concentrated enough)

I lingering worries about using the data twice and favourable
bias

I impact of the prior (only under the current model) but allows
for improper priors
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