Introd	
000	0000

▲日▼▲母▼▲日▼▲日▼ ヨーシック

AppliBUGS - Montpellier - November, 28th 2014

Hierarchical Bayesian species distribution models with the **hSDM** R Package

Ghislain Vieilledent^{*,1} Cory Merow² Jérôme Guélat³ Andrew M. Latimer⁴ Marc Kéry³ Alan E. Gelfand⁵ Adam M. Wilson⁶ Frédéric Mortier¹ and John A. Silander Jr.²

Cirad France, [2] University of Connecticut USA, [3] Swiss Ornithological Institute Switzerland,
 [4] University of California USA, [5] Duke University USA, [6] Yale University USA

	hSDM R package	Examples	Recommendations
0000000	00	0000	0000

- Species distribution models
- Issues : imperfect detection and spatial correlation
- Available softwares

Examples

- N-mixture iCAR model
- Binomial iCAR model with large data-set

Particular (2) hSDM R package

- Package main characteristics
- Parameter inference

Recommendations

- "statistical machismo" ?
- hSDM and applied research in ecology

Introduction	hSDM R package	Examples	Recommendations
000000	00	0000	0000

- Species distribution models
- Issues : imperfect detection and spatial correlation
- Available softwares

B) Examples

- N-mixture iCAR model
- Binomial iCAR model with large data-set

2 hSDM R package

- Package main characteristics
- Parameter inference

Recommendations

- "statistical machismo" ?
- hSDM and applied research in ecology

Introduction	hSDM R package	Examples	Recommendations
000000	00	0000	0000
SDM definition			

Objectives

- Identifying the suitable habitat for species persistence
- Reference : species niche (Hutchinson 1957)
- Representing this habitat spatially (maps)
- Applications : conservation biology

Imperfect d	etection		
000000	00	0000	0000
Introduction	hSDM R package	Examples	

- Species is not observed perfectly ("Now you see me, now you don't")
- Detection probability < 1
- Treating observations as the "true" species distribution might lead to completely wrong habitat models
- See Lahoz-Monfort et al. 2014 Global Ecology and Biogeography

Spatial autoco	rralation		
000000	00	0000	0000
Introduction	hSDM R package	Examples	

Spatial autocorrelation

- Most species present geographical patchiness
- Positive spatial correlation
- Causes :
 - Exogeneous environmental factors (climate, soil)
 - Endogeneous biotic processes (dispersal, migration)
- Ignoring spatial correlation may lead to biased conclusions about ecological relationships
- See Lichstein et al. 2002 Ecological Monographs

Introduction hSDM R package constraints occorrectly and N-mixture models

Site-occupancy model (occurrence data)

Ecological process : $Z_i \sim \mathcal{B}ernoulli(\theta_i)$ $logit(\theta_i) = X_i\beta$

Observation process : $y_{it} \sim \mathcal{B}ernoulli(\delta_{it} \times Z_i)$ $logit(\delta_{it}) = W_{it}\gamma$ N-mixture model (count data)

Ecological process : $N_i \sim \mathcal{P}oisson(\lambda_i)$ $\log(\lambda_i) = X_i \beta$

Observation process : $y_{it} \sim \mathcal{B}inomial(N_i, \delta_{it})$ $logit(\delta_{it}) = W_{it}\gamma$

Repeated observations at particular sites (multiple visits)

Introduction	hSDM R package	Examples	Recommendations
000000	00	0000	0000
CAR process			

intrinsic CAR

$p(ho_j| ho_{j'}) \sim \mathcal{N}ormal(\mu_j, V_{ ho}/n_j)$

 μ_j : mean of $\rho_{j'}$ in the neighborhood of j. V_{ρ} : variance of the spatial random effects. n_j : number of neighbors for cell j.

イロト イポト イラト イラト 二日

Introduction	hSDM R package	Examples	
0000000	00	0000	0000
CAR process			

Site-occupancy model (occurrence data)

Ecological process : $Z_i \sim \mathcal{B}ernoulli(\theta_i)$ $logit(\theta_i) = X_i\beta + \rho_{j(i)}$

Observation process : $y_{it} \sim Bernoulli(\delta_{it} \times Z_i)$ $logit(\delta_{it}) = W_{it}\gamma$

N-mixture model (count data)

Ecological process : $N_i \sim \mathcal{P}oisson(\lambda_i)$ $\log(\lambda_i) = X_i\beta + \rho_{j(i)}$

Observation process : $y_{it} \sim \mathcal{B}inomial(N_i, \delta_{it})$ $logit(\delta_{it}) = W_{it}\gamma$

Available so	ftwares		
0000000	00	0000	0000
Introduction	hSDM R package	Examples	Recommendations

Softwares for mixture models

PRESENCE, MARK, E-SURGE, unmarked, stocc, JAGS, stan, WinBUGS, OpenBUGS

Softwares for spatial autocorrelation

OpenBUGS, WinBUGS, BayesX, stocc, CARBayes, R-INLA, spatcounts, OpenBUGS, spdep, CARramps, spBayes

Mixture models + spatial autocorrelation

Very few softwares available and limitations : **OpenBUGS**, **WinBUGS** (might be slow), **stocc** (probit and binary data only).

	hSDM R package	Examples	Recommendations
000000	00	0000	0000

- Species distribution models
- Issues : imperfect detection and spatial correlation
- Available softwares

B) Examples

- N-mixture iCAR model
- Binomial iCAR model with large data-set

DM R package

- Package main characteristics
- Parameter inference

Recommendations

- "statistical machismo" ?
- hSDM and applied research in ecology

▲ロト ▲母 ト ▲臣 ト ▲臣 ト ― 臣 ― 釣んぐ

	hSDM R package	Examples	Recommendations
0000000	0	0000	0000
	e de la constante de la constan		

Package main characteristics

- hSDM : R "user-friendly" package
- Mixture models : site-occupancy, N-mixture, but also ZIB and ZIP models
- Including a spatial autocorrelation process (iCAR)
- Web-site : http://hSDM.sf.net
- Vignette with several examples on simulated and real data-sets

	hSDM R package	Examples	Recommendations
000000	0	0000	0000
Parameter	inference		

- MCMC methods (no approximation of the posterior)
- adaptive Metropolis within Gibbs ("efficient")
- written in pure C code ("fast")
- source code available through git on Sourceforge

Trace of beta0

	hSDM R package	Examples	Recommendations
000000	00	0000	0000

- Species distribution models
- Issues : imperfect detection and spatial correlation
- Available softwares

3 Examples

- N-mixture iCAR model
- Binomial iCAR model with large data-set

2 hSDM R package

- Package main characteristics
- Parameter inference

Recommendations

- "statistical machismo" ?
- hSDM and applied research in ecology

▲ロト ▲母 ▶ ▲臣 ▶ ▲臣 ▶ □ 臣 = ∽ ९ ९ ९

	hSDM R package	Examples	
000000	00	0000	0000
N-mixture iCAR	model		

- Kéry & Royle 2010, Journal of Animal Ecology
- Abundance of the Willow tit (*Poecile montanus*)
- Switzerland
- 264 sites with 2 or 3 visits
- 10×10 km cells

イロト イポト イヨト イヨト

	hSDM R package	Examples	
000000	00	0000	0000
N-mixture iCAF	R model		

- Models of increasing complexity
- (1) Poisson, (2) N-mixture and
 (3) N-mixture + iCAR

Introduction bSDM R package commendations octoo commendations octo

- Latimer et al. 2006, Ecological Applications
- Occurrence of Protea punctata
- Cap Floristic Region (South Africa)
- 36909 1'×1' grid cells
- Too many data to use ***BUGS** programs

 Introduction
 hSDM R package
 Examples
 Recommendations

 0000000
 00
 0000
 0000

 Binomial iCAR model with large data-set
 0000
 0000

Probability of presence

Spatial random effects

	hSDM R package	Examples	Recommendations
000000	00	0000	0000

- Species distribution models
- Issues : imperfect detection and spatial correlation
- Available softwares

3 Examples

- N-mixture iCAR model
- Binomial iCAR model with large data-set

2 hSDM R package

- Package main characteristics
- Parameter inference

Recommendations

- "statistical machismo" ?
- hSDM and applied research in ecology

"statistical	machismo"?		
0000000	00	0000	0000
Introduction	hSDM R package	Examples	Recommendations

Following Brian McGill's post

- Bonferroni corrections
- Phylogenetic corrections
- Spatial regression
- Detection error
- Bayesian methods

Introduction	hSDM R package	Examples	Recommendations
0000000	OO	0000	
<i>u</i>			

"statistical machismo" ?

Following Brian McGill's post

- Bonferroni corrections
- Phylogenetic corrections
- Spatial regression
- Detection error
- Bayesian methods

Can we be accused of "statistical machismo" ?

Introduction	hSDM R package	Examples	Recommendations
0000000	00	0000	0000
hSDM a	nd applied research in	ecology	

Some recommendations

- Complex models need **appropriate data** (quantity + structure).
- Beware of over-parametrization and identifiability problems.

Complex models and applied research

- It is true that in some cases, complex models do not significantly improve our ecological knowledge of the species.
- Conservation planning : we need to identify the level of **model complexity** we need to reach in order to take good decisions.

When complex models are necessary?

hSDM : tool to investigate the situations (species, place) where imperfect detection and spatial correlation lead to significant different results that impact decisions.

Introduction	hSDM R package	Examples	Recommendations
000000	00	0000	0000
hSDM and	applied research in	ecology	

Global Change Biology

Global Change Biology (2014) 20, 3591-3592, doi: 10.1111/gcb.12728

EDITORIAL COMMENTARY

Editorial commentary on 'BIOMOD – optimizing predictions of species distributions and projecting potential future shifts under global change'

WILFRIED THUILLER^{1,2} ¹ Taboratorie d'Écologie Alpine (LECA), University of Grenoble Alpes, Grenoble F-38000, France, ²Laboratoire d'Écologie Alpine (LECA), CNRS, Grenoble F-38000, France

hSDM R package is mentioned alongside MAXENT, biomod2 and ppmlasso

