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ABC — Basic rejection algorithm

Perform the next 2 steps for i in {1,...,/}, independently:

» Generate 0; from 7 and simulate D; from Mpy;

» Accept 6; if dp(D,D;) < ¢, where dy is a distance over D and
€ is a tolerance threshold for the distance between the
observed data and the simulated ones.
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Perform the next 2 steps for i in {1,...,/}, independently:

> Generate 6; from 7 and simulate D; from Mp,;

» Accept 0; if dp(D,D;) < €, where dy is a distance over D and
€ is a tolerance threshold for the distance between the
observed data and the simulated ones.

The set ©. ) = {0; : dp(D;,D) <€,i=1,...,1} of accepted
parameters forms a sample from the distribution:

(dej(D,e)h(X | 9)dx> ()
Jo <'ﬁ3dﬁ(9,6)h(x | O‘)dX> m(a)da

with By (D, €): ball centered around D
x+ h(x | 0): p.d.f. of D* drawn under My

pd\[}>~,c(9 | ®) =



What is the target distribution in ABC-rejection?
Target distribution:

(S, (0. x| 0)a) 7(6)
Jo <deD(D7€) h(x | a)dx) m(a)da
» Under regularity assumptions and an appropriate distance dp,

Pdy (0 | D) is a good approximation, when € — 0, of the
classical posterior distribution:

pdD,e(H ‘ 9) =

h(D | 6)m(6)
Jo h(D | a)7m(a)da

» More generally, py, (6 | D) may be a good approximation,
when € — 0, of:

p(0| D)=

(o, o) hlx | 0)ax) 7(6)
Jo <f\7d h(x | a)dx) m(a)da




Construction of the distance in ABC

» ABC is carried out by defining a distance between observed
and simulated data sets:

dn(D, Dj)

» Classically, the distance is based on a finite set of summary
statistics (to cirvumvent the curse of dimensionality):

s:D—S
S=5(D)
Si =s(Dj)

dp(D,Dj) = ds(S, Si)

» The definition of (s, ds) determines the information taken into
account in the ABC procedure and, consequently, the
inference accuracy



Approaches for defining (s, ds)

» Simply gathering a set of relevant statistics expected to be
related with parameters
» Use of the raw statistics and a mean square distance
» Variance equalization (Beaumont et al 2002)
» " Optimization” approaches
» Transformation into "axes” (PLS, ACP; Wegmann et al 2009)
» Dimension reduction (or binary weighting; Barnes et al 2012,
Joyce and Marjoram 2008, Nunes and Balding 2010)
» Optimal weighting (Soubeyrand et al. 2013)
> Regression-based point estimates of parameters (PEP): (S)
(Fearnhead and Prangle 2012, Haon-Lasportes et al. 2011)
» Model-based PEPs (e.g. pseudo-likelihood estimates) and
optimal weighting (Soubeyrand and Haon-Lasportes, 2015)



Functional statistics

» Functional statistics are convenient objects to describe
variations in time, space and other ordered domains

» They are often used for:
> describing patterns
> testing hypotheses
» fitting models



Example in distribution theory

Cumulative distribution function:
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Example in geostatistics

Semivariogram:

Feedback statistic

. Rank envelope test: p-interval = (0, 0.009)

Semivariogram
3 & 8

o

o .

3
Distance (in)

02

) @ Posiive value

O o004 O Negative value i

3 — Data function - Central function
O o0 @

u]
o)

I

i
it
)
»
Q



L1>-function:
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Example for spatial point processes

Rank envelope test: p-interval = (0.051, 0.052)
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Example in time series

Cumulative after-before difference:
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Example in genetics

Genetic distance:
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ABC and Functional statistics

How to use functional statistics as summary statistics in ABC?
» Handling the infinite dimension

» Handling the dependencies along the support of the function
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Exact ABC—rejection algorithm (Rubin, 1984)

Al. Carry out the next two steps, independently for / in

1.1,
1. Generate 6; from 7 and simulate D; from Mj,.
2. Accept 0; if D; = D, reject it otherwise.

» Limitation: P(D; = D) is low for high-dimension data and
zero for continuous data
» Solution:

» Use of a tolerance threshold (P(D; ~ D))
» Use of summary statistics (dimension reduction)



ABC-rejection algorithm (Pritchard et al., 1999)

A2. Carry out the next three steps, independently for i in

{1,...,1},
1. Generate 6; from 7 and simulate D; from Mj,.
2. Compute the statistics S; = s(D;), where s is a function from
D to the space S of statistics.
3. Accept 0; if d(5;,S) < €(7), where d is a distance over S and
€(7) € Ry is a tolerance threshold for the distance between
the observed statistics S = s(D) and the simulated ones.

€(7) depends on the proportion 7 of accepted 6; among the |
simulated parameters (7 is called the acceptance rate)

» Question: What distance d when S is a functional statistic?

» Solution: Use of an optimized weighted distance



Weighted distance for functional statistics

» Functional statistics included in:

SC{g:R—H&,/g2<oo}.
R

» Distance between functional statistics:
d(Si,S;w) = / w(r){Si(r) — S(r)}?dr.
R

with w : R — Ry
» Three weight functions:
» Constant function:
west(r) =1

» Inverse variance function (Beaumont et al., 2002):

y (r)_{V(S,-(r))l if V(Si(r)) >0

0 otherwise;

» Optimal function in W = {w: R = Ry, [ w =1}



ABC-rejection algorithm with functional statistics

A3. Carry out the next four steps,

1.

2.

For i in {1,...,/}, independently generate §; from 7, simulate
D; from My, and compute the functional statistic S; = s(D;);
For jin {1,...,J}, independently generate 9} from 7, simulate

@j- from My, and compute the functional statistic SJ’ = S(DJ’-);
J

(67, S;) will be used as pseudo-observed data sets (PODS);
Select the weight function and the acceptance rate which
minimize the BMSE criterion:

(Wopt, Topt) = argminW TEWX(O 1]BMSEJ(W T)
,7) = 04 )?
(Q}k)

[ay

BMSE (w, 7) jz
0% k-th component of 0}
V(0): prior variance of ¢,

ij(W,T) point estimates (e.g. marginal posterior medians) of

91’-,( obtained with A2 applied to 57 and {(0;,S;) : i =1,...,/}

4. Foriin {1,...,1}, accept 0; if d(S;i,S; Wopt) < €(Topt).



What is the target distribution?

> The set Ogpt = {0 : d(5i, S; Wopt) < €(Topt), i =1,...,1} of
accepted parameters forms a sample from the postenor
( Foye o (St PO 9)dx) (0)
Jo <f3d(_,_;wopt)(s,e(rom)) fx | a)dX) m(a)da

with x = f(x | 0): p.d.f. of S* = s(D*) where D* is drawn
under My

» Weighting the distance modifies the posterior under which the
accepted parameters are drawn

pd('e'§Wopt)7€(Topt)(0 ’ 5) =

» However, under regularity conditions and when ¢(7op¢) — 0,
the new posterior may be a good approximation of p(é | S)



Remarks

» Tuning components: s: D — S; | (ABC simuls); J (PODS);
d (weighted squared difference); BMSE; optimization algo.
» Typically, / around 10° or 108 and J = 103
» Optimization algorithm:
» w restricted to piecewise constant functions with a finite

number of jumps whose locations are known
» Constrained Nelder-Mead algorithm

> Incorporation of a pilot ABC run for restricting the sets of
PODS:

9/ o’ 2
PMSE;(w, T) ZZ el T, )
~al V()

Jj€d k=1

» Optimization of the acceptance rate when wes or wy,, is used

Test =argmin,¢(o 1]BMSE j(west, 7)

Tvar =argmin.¢ o 11BMSE ;(wyar, 7)



Application 1: simple step model

» Functional statistic:

otherwise,

r|? r if r
S(r):{gu +e(lr)  ifrefo.a)

e(n) oo, N(0,0(n)), n=1,...,4

This function has 4 positive steps whose heights are:
£(0), 8 +¢(1), 40 4+ (2) and 960 + (3)

» The first step S(0) = £(0) does not bring information on 6
» Three noise structures (0(0),0(1),0(2),0(3)):

Constant Increasing Decreasing
(1,1,1,1) (0.05,0.1,0.5,1) (1,0.5,0.1,0.05)




ABC tuning

» [ =10° J =103
» Weight function:

Wi if re[n,n+1), Vne {0,1,2,3}
w(r) = .
0 otherwise,

wo, Wi, wa, wa > 0 and Zi:o w, =1

» Distance function:

d(s;,S;w) = /JR w(r){Si(r) — S(r)}zdr

= Z wa{Si(n) — S(n)}2.



Three ABC runs
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Series of ABC runs

Average BMSE (x1000) and SD for the simple step model (based on 500
runs) and # of times that each weight fct provided the lowest BMSE:

West Wvyar Wopt
Constant noise  9.30 (0.44) 10.02 (0.47)  9.27 (0.44)

0 0 500
Increasing noise  4.23 (0.20) 3.90 (0.18) 3.85 (0.17)

0 0 500
Decreasing noise  0.044 (0.002) 0.259 (0.019) 0.030 (0.001)

0 0 500

Mean values and SD of the optimum acceptance rate 7o (x10°) and
weight function w,,; for the simple step model computed from 500 runs:

Noise 10° x Topt  Wopt(0) Wopt (1) Wopt (2) Wopt(3)

Cst 1940 (930) 0.16 (0.11) 0.23 (0.10) 0.30 (0.09) 0.31 (0.08)
Incr. 360 (200) 0.98 (0.02) 0.02 (0.02) 0.00 (0.00) 0.00 (0.00)
Decr. 85(38) 0.02(0.05) 0.03(0.02) 0.18(0.05) 0.77 (0.06)
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Application 2: modified Thomas process

> Model:
» Parent points: homogenenous Poisson p.p. with intensity A
» Daugther points (the observed points): Poisson number (with
mean 1) of points spread around each parent point x with a

2D-, isotropic normal distribution N(x, o%1d)
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ABC tuning

» [ =10° J=103
» Weight function with 21 jumps:

0 if r<QOorr>0.3,

Wo,...,wig >0 and [ w(r)dr =31 (0.3/20)w,
» Distance function:

(5 Siw) = [ w(r)Si0) = S{Yer

249

W(r)_{w,, |fr€{20, (20 )>,Vn€{0,1,...

.19}

~ Y w(0.3k/250){S5;(0.3k/250) — S;(0.3k/250)}?

k=1



Series of ABC runs

Average BMSE and SD for the modified Thomas process (based on 500
runs) and # of times that each weight function provides the lowest BMSE

West Wvyar Wopt
BMSE 0.651 (0.024) 0.942 (0.031) 0.365 (0.025)
Lowest BMSE frequency 0 0 500
10° x 7 18 (7) 35 (13) 18 (9)
Distrib. of 7op¢ Pointwise median of w 3 ex. of w
z° 2 g |
670 2 3) 40 50 60 Dé.orc‘r)'m‘ﬁWdrﬁrc’)m"””6'.72'6””"”73.30 o '(ﬁ‘o = 020 ‘ La.zo

10°x71 Distance (r) Distance (r)
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Application 3: dispersal model for pollen

» Data: genotypes of seeds collected from trees at known
locations

» Functional statistic: genetic differentiation d>‘,’_—l%§mm, between
the pollen pools of mother trees m and m’
» 14 mother trees = 91 pairs of mothers
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» Model: relatively complex model including
» a parametric dispersal kernel for pollen proportional to:

wof- (2}



ABC tuning

» | =10%or | =10%, J =103, |7 |= 250
» Weight function with 21 jumps:

w(r) = Whp if r €[rn,rnt1), Vne{0,1,...,19}
o if r<0orr>nr,

wo, ..., wig > 0 and [ w(r)dr = Z},gzo(rnﬂ —r)w, =1
» Distance function:

d(Si, Sjiw) = /R w(r){Si(r) — Sj(r)}?dr
91

~ W(?k){s,'(Fk) - SJ{(Fk)}Z
k=1

where {Fx : k =1,...,91} are the 91 inter-mother distances



BMSE and PMSE values for varying simulation number

BMSE and PMSE obtained for the estimation of the pollen dispersal
parameters with | = 10° and / = 10°

| =10°

West Wvyar Wopt p'Value
BMSE 1.009 1.051 0.974 7.9x10~*
PMSE (without pilot ABC) 0.101 0.102 0.100 0.57

PMSE (with pilot ABC) 0.097 0.099 0.087 5.4x107°

| =10°

West  Wyar  Wopt p-value
BMSE 0.977 0981 0938 1.1x10°*
PMSE (without pilot ABC) 0.092 0.094 0.089 0.11

PMSE (with pilot ABC) 0.090 0.094 0083 1.8x107*

Last column: p-value of the paired t-test comparing the average MSEs
obtained with wp: and west




Optimal weight function and posterior distributions

Using Algorithm A3 with pilot ABC and (/, J,|d|) = (10, 103, 250):
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Posterior sample size: 113



Discussion

» Qur approach can be applied to non-functional statistics
» One weight per summary statistic (Application 1)
» However, being able to sort the summary statistics with a

covariate (time, distance...) allows us to reduce the number of
weights to be optimized

» Even if the dependence in the covariate is weak (Application 3)
» Trade-off between optimizing the weights and making more
simulations
» Investigation around the size of the posterior sample
» More simulations = larger size
» Alternative: replacing the BMSE by a criterion leading to
larger sizes
» However, the BMSE-based optimal size is appropriate for
handling the bias-variance trade-off



[[lustration of the bias-variance trade-off

> Model: Dy,...,Digp  ~ N((ﬁ),(i’{))

indep.
» Summary statistics:
» average of the first components of the D, (n=1,...,100)
» number of times that the two components of D, have the
same signs

» Bias-variance trade-off:

Local posterior probability around true parameter values
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» Application of Algorithm A3 with (/,J) = (5 x 10%,103):
posterior sample size = 585



