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An introductory example: Aircraft survivality
What are the vulnerable areas of the plane?1

Data
Planes returning with hits
Hits by types of ammunition

Model
Multinomial model with latent levels

Assumptions
• Equi-vulnerability areas
• "A hit will not down the plane" does not depend on the number

of previous non-destructive hits

Main message: Survivorship bias

[1] Wald (1980) A Reprint of ’A Method of Estimating Plane Vulnerability Based on Damage of Survivors.’ (tech. report)
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HIV transmission
How to model the unsequenced diagnosed persons?1

Data
Phylogenetic subtrees from:

Viral DNA sequences
Epidemiological data

Subtree Size Models
From branching process theory
Bayesian nonparametric approach

Aims
Track the epidemic spreading
Determine risk factors related to introductions and transmissions

Main message: Important impact of data incompleteness

[1] PMG, Ratmann and Herbeck Manuscrit in preparation.
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Truffle production

What is the impact of rainfall on truffle production?1

Data
Rainfall measures and truffle productions

for an orchard
from 1925 and to 1949

Model
Functional Linear Regression

Limitations
Difficulty to obtain data : only 25
Similar rainfall scenarios

Main message: need more data/information for a robust inference

[1] PMG, Abraham, Baragatti and Pudlo (2019) Bayesian Functional Linear Regression with Sparse Step Functions
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Truffle production and modelling
Functional Linear Regression model

yi|xi(·), µ, β(·), σ2 ind∼ N

µ+
∫ 1

0
xi(t)β(t)dt, σ2


Parameter subspace: Stepfunctions

β(t) =
K∑
k=1

bk
|Ik|

1
{
t ∈ Ik

}
where Ik = [mk + `k;mj − `k]
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Application

Inference limitation:
prior probabilities ≈ posterior probabilities
too less data
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Regression model and informative prior
Regression model: for (yi, xi)i

yi|xi, θ ∼ Pθ(·|xi)

Experts’ knowledge:
Belief of expert e about θ is denoted by Πe.
From a Bayesien point of view:

πe(θ) ∝ pθ(θ|D)π0(θ).

where D is the "expert experience".

Experts’ predictive distribution: pe(·|x)

pe(y|x) =
∫
pθ(y|x)Πe(dθ|D)

Linear model:
Linear Regression model is given by

yi|xi, µ, β, σ2 ind∼ N (µ+ βxi, σ
2)

An expert’s prediction can be viewed as:

ŷei = Eθ∼Πe(·|D)(y|xi, θ)
= µe + xiβe
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Indirect elicitation
Give a rainfalls evolution

(
x(t)

)
and a likely production

(
y
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Experts’ uncertainty and combination
Pseudo-data:
Suppose that we have obtained predictions from E experts:

(ŷei , xei ), for e = 1, . . . E and i = 1, . . . , ne
Prior distribution:
How to build an informative prior from these experts’ predictions ?

- Uncertainty of the pseudo data
- Expert dependence structure
- Combination of experts’ knowledge

Methods:
In the following, we present two approaches.
1- A hierarchical model1
2- A fractional approach2,3

[1] Albert et al. (2012) Combining Expert Opinions in Prior Elicitation.
[2] Chen and Ibrahim (2000) Power prior distributions for regression models.
[3] Grünwald (2012) The Safe Bayesian.
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Combination via a hierarchical prior
Experts’ group:

Several consensus information

Pseudo data model:
ye,ji = µe,j +

∫ 1

0
xe,ji βe,jdt

where εe,ji
ind∼ N (0, σe,ji )

Hierarchical prior:
µe,j ∼ N (µj , σj) βe,j ∼ GP(βj ,Σj)
µj ∼ N (µ, ση) βj ∼ GP(β,Σ)

Covariance process:
Σj(u, t) = σ2

jf exp
{
− 1

2`j
(u− t)2

}
Σ(u, t) = σ2

f exp
{
− 1

2`(u− t)2
}

for i = 1, . . . , n

for k = 1, . . . , K

for k = 1, . . . , nij

for i = 1, . . . , nj

for j = 1, . . . , J

yiµ β

σ2

bk

mk

`k

βj Σ

σ2
f

η

βij Σj

σ2
jf

ηj

σ2
ijk

yijk

µij

σ2
j

µj

σ2
µ

1
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Combination via a hierarchical prior
Integrating out:
µe,j , µj , βe,j , βj

Unknown hyperparameters:
σe,ji , σ2

j , σ
2
η, σ

2
j,f , σ

2
f , `j , `

Noninformative prior:
π(σ2

f ) ∝ σf , π(σ2
j,f ) ∝ σj,f

π(σ2
j ) ∝ σj and π(σ2

η) ∝ ση
Parameters tuning:

- `j and ` with additional information
- σe,ji = q?

e,j

Φ−1

(
1+c

e,j
i

2

)
where ce,ji is the expert certainty and q?e,j is given by

P

(∣∣∣∣ye,ji − µe,j − ∫ xe,ji (t)βe,j(t)dt
∣∣∣∣ < q?e,j

)
= ce,ji

for i = 1, . . . , n

for k = 1, . . . , Kfor k and i

for j
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Synthetic example
50 data

50 pseudo data (certainty =0)
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Fractional prior

Stepfunctions:

β(t) =
K∑
k=1

bk
|Ik|

1
{
t ∈ Ik

}
Bliss model: (data)

yi|xi(·), µ, b, σ2, I ind∼ N
(
µ+ xi(I.)b , σ2)

Pseudo-data model:

yei |xei (·), µ, b, σ2, I ind∼ N
(
µ+ xei (I.)b , σ2)

Fractional prior: (given the pseudo data)

π0(θ)×
E∏
e=1

ne∏
i=1

p(yei |θ)w
e
i ∝ π(θ|y1, . . . , yE ;w)
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Posterior properties (1/2)
Posterior
Posterior given observed data and pseudo data is proportional to(

σ
2
)− 1

2

(
n+
∑E

e=1
newe+K+1

)
−1

exp
{
−

1
2σ2

[
MSE +

E∑
e=1

MSEe + µ
2
v

−1
0 + b

T Σ(I)−1
b
]}

π(I)

where

MSE =
n∑
i=1

(
yi − µ− xi(I.)b

)2
MSEe =

ne∑
i=1

we
i

(
yei − µ− xei (I.)b

)2

Specific cases
Case 1 : null weights
⇒ posterior does not depend on pseudo data

Cas 2 : we
i = 1

⇒ the pseudo datum matters as an observed datum.

●

●

●
●

●

●●

●

●●●
●

●

●

●
●

●

●

●

●
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Posterior properties (2/2)
W e = diag

(
we1, . . . , w

e
ne

)
Posterior expectation of b

E
(
b|y, y1, . . . , yE , I

)
= M−1

w

[
x(I)T y +

E∑
e=1

xe(I)TW eye
]

where Mw = Σ(I)−1 + x(I)Tx(I) +
∑E
e=1 x

e(I)TW exe(I).

E
(
β(t)|y1, . . . , yE

)
E
(
β(t)|y

)
E
(
β(t)|y, y1, . . . , yE

)
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Tuning the weights
The weight of the ie pseudo datum of expert e : wei = cei ?

(where cei is the certainty of expert e)

Claims:
take into account experts dependence structure.

1
1 +
∑

f 6=e r
2
e,f

(re,f : dependence between experts e and f)

pseudo data weight does not exceed observed data weight.

1
E

n

ne
(E : number of experts)

Weights wei are based on the certainty cei :

wei = cei ×
1

1 +
∑

f 6=e r
2
e,f

× 1
E

n

ne
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Application: truffle data
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Conclusion
Elicitation procedure

- Generic method for eliciting expert information
- Friendly for experts
- Let experts the possibility to give a range of scenarios

Hierarchical approach
- Fully justified approach
- Consistent results on synthetic data
- Could be difficult to adapt for complex model/data

Fractional approach
- Experts’ contributions clearly given
- Generic approach
- Need theoretical justification for weight calibration

Future work
- Experts’ dependence structure
- Improve the elicitation meetings
- Theoretical justification
- Design calibration
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