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London An introductory example: Aircraft survivality

What are the vulnerable areas of the plane?’

Data
Planes returning with hits
Hits by types of ammunition

Model
Multinomial model with latent levels

Assumptions

e Equi-vulnerability areas

e "A hit will not down the plane" does not depend on the number
of previous non-destructive hits

Main message: Survivorship bias

[1] Wald (1980) A Reprint of 'A Method of Estimating Plane Vulnerability Based on Damage of Survivors.' (tech. report)
e
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London HIV transmission

How to model the unsequenced diagnosed persons?’

Data
Phylogenetic subtrees from:
Viral DNA sequences
Epidemiological data

Subtree Size Models
From branching process theory
Bayesian nonparametric approach

Aims
Track the epidemic spreading
Determine risk factors related to introductions and transmissions

Main message: Important impact of data incompleteness

[1] PMG, Ratmann and Herbeck Manuscrit in preparation.
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London Truffle production

What is the impact of rainfall on truffle production?’

Data
Rainfall measures and truffle productions
for an orchard
from 1925 and to 1949

Model
Functional Linear Regression

Limitations
Difficulty to obtain data : only 25
Similar rainfall scenarios

\\\

Main message: need more data/information for a robust inference
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London Truffle production and modelling

Functional Linear Regression model

yili(-), 1 B(), 02 N (/H'/ it )5(75)(175,02) % ﬁ
OO

Parameter subspace Stepfunctions

Z R IR

where 7, = [mk + liymy — L]
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London Truffle production and modelling

Functional Linear Regression model

2 ind
yz|mz()7 122 ﬁ()a g~
Parameter subspace: Stepfunctions

Z|I |1{teIk}

where 7, = [mk + Ly my — L]

Estimates:
smooth function
stepfunction
support
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London Application

08
I

Inference limitation: 8 =
prior probabilities = posterior probabilities 3
too less data g oz
posterior
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London Regression model and informative prior

Regression model: for (y;, z;);
yi|-’L'i, 0~ P9(|xl)
Experts’ knowledge:
Belief of expert e about 6 is denoted by II..
From a Bayesien point of view:

7e(0) o< p(0|D)mo(6).

where D is the "expert experience".

6/16



Imperial College

London Regression model and informative prior

Regression model: for (y;,z;);

il @i, 0 ~ Py(-|;
yilx o(:|2:) Linear model:

Experts’ knowledge: Linear Regression model is given by
Belief of expert e about 6 is denoted by II.. 5 ind )
From a Bayesien point of view: Yilzi, p, B, 07 ~ N(u+ B, 07)

7e(0) o< pg(0]D)mo(6). An expert's prediction can be viewed as:
where D is the "expert experience". 9; = Eorr. (1) (Y|4, 0)
Experts’ predictive distribution: p,(-|z) = fte + z; Be

pe(ylz) = / po(y|2)TT(d6]D)
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Indirect elicitation

Give a rainfalls evolution (z(¢)) and a likely production(y).

precipitation (mm)

800
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o 4

Rainfalls Monthly rainfalls (mm)  Likely production
(kilo per hectare)
January :
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April :

May :
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July :
August : Certainty
September :
October :
November :
Decembre :
January :
February :
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March :
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Indirect elicitation

Give a rainfalls evolution (z(¢)) and a likely production(y).

precipitation (mm)

800

600

400

200

o 4

Rainfalls

J FMAMJ JASONDUJIFM

Monthly rainfalls (mm)  Likely production
(kilo per hectare)

January : 150

February : 115

March : 125

April : 150 70

May : 210

June : 250

July : 250

August : 250 Certainty

September : 225

October : 200

November : 175

Decembre : 160 0.8

January : 80

February : 60

March : 50
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London Experts’ uncertainty and combination

Pseudo-data:
Suppose that we have obtained predictions from E experts:
(g5, 28), fore=1,...Eandi=1,...,n,
Prior distribution:
How to build an informative prior from these experts’ predictions ?

- Uncertainty of the pseudo data
- Expert dependence structure
- Combination of experts’ knowledge
Methods:
In the following, we present two approaches.
1- A hierarchical model!
2- A fractional approach??

[1] Albert et al. (2012) Combining Expert Opinions in Prior Elicitation.
[2] Chen and Ibrahim (2000) Power prior distributions for regression models.
[3] Griinwald (2012) The Safe Bayesian.

I
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London Combination via a hierarchical prior

Experts’ group:
Several consensus information

Pseudo data model: L
Yl = pej +/ 2§ B, jdt
where £57 " N(0, o) ’
Hierarchical prior:
frej ~ N (pj,05) Be.j ~ GP(Bj,%5)
pj ~ N(p, o) Bj ~GP(B, %)

Covariance process: .
Yi(u,t) = ajzf exp {%(u — t)z}

S(u,t) = ofexp {216(“ _ t)z}
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London Combination via a hierarchical prior
Integrating out:

He, 5y g, /Be,ja /BJ
Unknown hyperparameters:

06] 02 02 ajf,af,éj,f /@\

R
==

for k and i

for j
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London Combination via a hierarchical prior

Integrating out:
He.j» s Be,j Bj

Unknown hyperparameters:
o; ¢.J 02 Uf,,aif,cr?,éj,f

Noninformative prior:
2 2 .
W(Uf) X af, W(Uj,f) X 0j,f
m(0%) o< o and 7(07) o< oy
Parameters tuning;:
- ¢; and £ with additional information

. *
€J _ de,j

- Ui = ﬁ
d—1 27.

where ¢

r(

ny — fej — /xf’j(t)ﬂe,j(t)dt

is the expert certainty and ¢; ; is given by

- qz,j> e

for k and i

¥

/’m\

for j
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London Synthetic example

50 data 50 data 50 data
50 pseudo data (certainty =0) 50 pseudo data (certainty =1)

0.0 02 0.4 06 08 10 0.0 02 0.4 06 08 10 0.0 02 0.4 06 08 10
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London Fractional prior

Stepfunctions:

Z|I |1{teIk}

Bliss model: (data)

yilai (), 1,0, 0%, TR N (4 (2 , 0?)
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Fractional prior

Stepfunctions:

Z T, |1{1t €I}

Bliss model: (data)

yilzi (), s b, 0%, TN

(b + (2, 02)

Pseudo-data model:

Yl (), by 02 TN (n+ 25 (T)b, 02)

Fractional prior: (given the pseudo data)
E ne

OxI1 T1rwsl0) o =6y, ... y"%w)

e=1li=1
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London Posterior properties (1/2)

Posterior
Posterior given observed data and pseudo data is proportional to

E
- = WK 1)71 1
(02) 2(“+Zﬂ:1 rew i exp{ - 2—2[MSE+ E MSE. + u?ug ! +bTE(I)_1b]}7T(I)
o

e=1

where
n 2 e 2
WSE =3 (1~ =@ )0) MSE. = 3w (vt — - 2t(2)0)
=1 =1
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London Posterior properties (1/2)

Posterior
Posterior given observed data and pseudo data is proportional to

E
1 E wE )
—1(nt W+ K41)—1 1 _ _
(02) 2(” szl”“” exp{—2—2[MSE+ g MSE. + vt 4+ 7 S(T) 1b]}ﬂ(1)
o
e=1

where
n 2 e 2
WSE =3 (1~ =@ )0) MSE. = 3w (vt — - 2t(2)0)
=1 =1

Specific cases

Case 1 : null weights
= posterior does not depend on pseudo data

Cas2: wf =1
= the pseudo datum matters as an observed datum.
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London Posterior properties (2/2)

We = diag (w$, ..., wg)
Posterior expectation of b

E(b|y,y1,...,y I) M

y_'_zl_ Twe e]

where M, = S(Z)~ + 2(2)Tz(Z) + Ze:l z¢(2)TWeze(T).
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London Posterior properties (2/2)

We = diag (wf,...,wi, )

Posterior expectation of b

E
E(b|y,y] ..... y ,I) = M;" lx(z)’wz @) Twe ]
e=1
where My, = S(Z) "1 + 2(2)2(T) + 3.7 2°(2)TWez®(2).
E(BWy" ... y7) ---
E(B(t)y) - -
E(ﬁ(t”yvyla R 7yE) -
Posterior ——: Combination of

- posterior given observed data - - -
(fractional) posterior given pseudo data - --
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London Posterior properties (2/2)

We = diag (wf,...,wi, )

Posterior expectation of b

E(bly, v y”,z) = M! lxm’"y + Y @) Wy

where My, = S(Z) "1 + 2(2)2(T) + 3.7 2°(2)TWez®(2).

E(B(t)ly",....y") --- | |
E(B(t)ly) - - We'gf(:"c?szec(:]r.?smg
E(BO)yy"s- - y") —

- ]E(B(t)ly7y17 e 7yE)
becomes

- ~E(Bt)ly)
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We = diag (wf,...,wi, )

Posterior expectation of b

E(bly, v y”,z) = M! lxm’"y + Y @) Wy

where My, = S(Z) "1 + 2(2)2(T) + 3.7 2°(2)TWez®(2).

E
E(ﬁ(lé)(lzzz’tﬂy)’ yf 7)7 T WeigP;;cjs;3 dicgeasing
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The weight of the i° pseudo datum of expert e : wi =c{ ?
(where ¢ is the certainty of expert €)
Claims:

@ take into account experts dependence structure.

1 (re,7 : dependence between experts e and f)
14D sl
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The weight of the i° pseudo datum of expert e : wi =c{ ?
(where ¢ is the certainty of expert €)
Claims:

@ take into account experts dependence structure.

1 (re,7 : dependence between experts e and f)
1+ Zf;ﬁe g

@ pseudo data weight does not exceed observed data weight.

1ln J (E : number of experts)
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London Tuning the weights

The weight of the i° pseudo datum of expert e : wi =c{ ?
(where ¢ is the certainty of expert €)
Claims:

@ take into account experts dependence structure.

1 (re,7 : dependence between experts e and f)
1+ Zf;ﬁe g

@ pseudo data weight does not exceed observed data weight.

1ln J (E : number of experts)
Ene

Weights w{ are based on the certainty ¢j :

X 1 X 1
1+ sy B

|=

wi = ¢§

3

@

I —
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Application: truffle data
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Application: truffle data
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Application: truffle data

Prior of F. Le Tacon

@
S
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[S]
pai
° -
- ~
’ ~
o = i
o Ry
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S A
T
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Posterior given pseudo data

and observed data

.
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- <
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= q ~
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\
“ \
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N ’
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- ]E(B(t”yl:“'vyE)
-~ E(Bt)ly)
— E(BOy,y",- -, v")
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London Conclusion

Elicitation procedure
- Generic method for eliciting expert information
- Friendly for experts

- Let experts the possibility to give a range of scenarios

Hierarchical approach Fractional approach
- Fully justified approach - Experts’ contributions clearly given
- Consistent results on synthetic data - Generic approach
- Could be difficult to adapt for complex model/data - Need theoretical justification for weight calibration

Future work
- Experts' dependence structure
- Improve the elicitation meetings
- Theoretical justification

- Design calibration

I
16 / 16



References

Grollemund, P. M., Abraham, C., Baragatti, M. and Pudlo, P. (2019) Bayesian Functional Linear Regression with Sparse Step Functions (accepted)
Grollemund, P. M., Abraham, C. and Baragatti, M. (2019+) Bayesian Functional Linear Regression with Informative Prior Distribution (submitted)

Le Tacon, F., Murat, C., Gravier, J., Montpied, P, Dupouey, J.-L., Grollemund, P.-M. and Baragatti, M (2018+) Evolution of the Périgord black
truffle (Tuber melanosporum Vittad.) production in the Vaucluse department (France) from 1903 to 1988. Influence of annual climatic variations and
possible effects of climate changes or sociological factors (in revision)

Implementation : CRAN: bliss package and github.com/pmgrollemund /bliss/
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