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ABC

Observations : x? ;
parameters : θ1, . . . , θn ;
Intractable likelihood
f(x?|θ1, . . . , θn).
Possible solution : ABC

sample (θ1, . . . , θn) from
the prior ;
sample x, pseudo
observation, from the
likelihood f(x|θ1, . . . , θn) ;
keep if d(s(x), s(x?)) < ε.

s(x?)

ε

{θi, s(xi)}

πε(θ | s, x?) ∝
∫
π(θ)f(x | θ)1d(s(x),s(x?))<ε dx



2

ABC

Observations : x? ;
parameters : θ1, . . . , θn ;
Intractable likelihood
f(x?|θ1, . . . , θn).
Possible solution : ABC

sample (θ1, . . . , θn) from
the prior ;
sample x, pseudo
observation, from the
likelihood f(x|θ1, . . . , θn) ;
keep if d(s(x), s(x?)) < ε.

s(x?)

ε
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π∞(θ | s, x?) ∝ π(θ)
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ABC

Observations : x? ;
parameters : θ1, . . . , θn ;
Intractable likelihood
f(x?|θ1, . . . , θn).
Possible solution : ABC

sample (θ1, . . . , θn) from
the prior ;
sample x, pseudo
observation, from the
likelihood f(x|θ1, . . . , θn) ;
keep if d(s(x), s(x?)) < ε.

s(x?)

ε

{θi, s(xi)}

π0(θ | s, x?) ∝ π(θ | s(x?)) 6= π(θ | x?)
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Difficulties using ABC

"Exploration" of parameter space highly inefficient ;
choice of the summary statistic s, ideally s has same
dimension as θ.

Some solutions :
more complex algorithm, to improve the quality of the
proposals (MCMC-ABC) ;
ABC-Random Forests for the choice of s (only for scalar
parameters).
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ABC Gibbs

Model described by θ = (θ1, . . . , θn).

Input: starting point θ(0) = (θ
(0)
1 , . . . , θ

(0)
n ), observations x∗.

Output: a sample (θ(1), . . . , θ(N)).
for i = 1, . . . , N do

for j = 1, . . . , n do
θ

(i)
j ∼ πεj (· | x?, sj , θ

(i)
1 , . . . , θ

(i)
j−1, θ

(i−1)
j+1 , . . . , θ

(i−1)
n )

Algorithm 1: ABC-Gibbs.

One tolerance for each parameter εj ;
one statistic for each parameter sj .
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In practice

To run ABC-Gibbs we need to sample one point θ from a law of
the form

πεθ(· | α, sθ, x
?)

In practice we use the following procedure:
sample θ1, . . . , θN ∼ π(· | α)
sample xj ∼ f(· | θj , α)
compute dj = d(sθ(xj , α), sθ(x

?, α))
return θargminjdj

That is we use a quantile of distance instead of εθ.
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Does it converge (in distribution) ?

Theorem 1
Assume that for all ` ≤ n, there exists some 0 < κ` < 1/2, such
that

κ` = sup
θ>`,θ̃>`

sup
θ<`

‖πε`(· | x
?, s`,θ<`,θ>`)−πε`(· | x

?, s`,θ<`, θ̃>`)‖TV

with θ>` = (θ`+1, θ`+2, . . . , θn), and θ<` = (θ1, θ2, . . . , θ`−1).
Then, the Markov chain produced by ABCG converges
geometrically in total variation distance to a stationary
distribution νε, with geometric rate 1−

∏
` 2κ`.
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Remarks, in practice

We use stronger assumptions to roughly bound the distances.

the parameters are compactly supported ;
the conditional densities never vanish outside of the above
mentioned support ;
the conditional likelihoods are continuous in the
parameters.

Furthermore, we affirm that :

the speed is highly suboptimal ;
we can prove more particular results for each model.
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ABCG hierarchical case

α

µ1 µn. . .

x1 xn. . .

Input: observations x?, initial value
(α(0), µ(0))

Output: A sample (α(i), µ
(i)
1 , . . . , µ

(i)
n )i.

for i = 1, . . . , N do
for j = 1, . . . , n do

µ
(i)
j ∼ πεµj (· | α

(i−1), sµj , x
?)

α(i) ∼ πεα(· | sα, µ(i)
1 , . . . , µ

(i)
n )

Algorithm 2: ABC-Gibbs sampler for hier-
archical models.
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A toy example

Normal hierarchical model with known variances, 20
parameters, comparison with the exact posterior.

hyperparameter α with prior U([−4, 4]) ;
parameters µ1, . . . , µ20 iid N (α, 1) ;
observations x1, . . . , x20 iid N (µi, 1)⊗10.

ABC Vanilla / ABC-SMC :

We need one summary statistic s = (x̄1, . . . , x̄20) (sufficient
statistic here, the best possible), d =| · |1 ;
These methods imply to sample in R21, with a high
correlation.

the correlation is included in the prior, so simple for ABC
vanilla
far more difficult with ABC-MCMC / ABC-SMC methods :
the proposal kernel must be adapted, even in this example
no clue on the optimal kernel.
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A toy example : how to Gibbs in practice

In order to run ABC-Gibbs we need to find :

A "sumary statistic" for each µi given µ−i, α, x, where x is
a pseudo observation from f(· | α, µ).
a "sumary statistic" for α given µ, x.
distances in the space of the statistic

These are not statistic in the classical sense, as they depend on
the value of the parameter upon which we condition at each
step.
Here, the choice is simple, thanks to the hierarchical structure:

for all parameters, sµi(x, µ−i, α) = x̄i ;
for the hyperparameter, sα(µ, x) = µ̄ ;
any euclidean distance is ok in R.
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Why it’s a good idea

For the selection of the statistics
it is usually simpler to find a summary statistic for 1
parameter;
hopefully the statistic is 1 dimensionned, so no need to find
a distance in a strange space;

For the computations
drastic reduction of parameter dimension;
often the statistic can be simulated at smaller cost (e.g.
hierarchical mode, we only need to simulate "downstream");
for a given computational time N , we reach a lower
tolerance 1/N quantile, than vanilla ABC.
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A toy example : the algorithm fully developed

Input: observations x?, initial value (α(0), µ(0))

Output: A sample (α(i), µ
(i)
1 , . . . , µ

(i)
n )i.

for i = 1, . . . , N do
for j = 1, . . . , n do

sample µ1,...,Nµ
j ∼ π(· | α(i−1)) and associated

pseudo-observations x1,...,Nµ
j ∼ f(· | µ1,...,Nµ

j ).

µ
(i)
j ← argmink=1,...,Nµd(sµ(xkj ), sµ(x?j ))

sample α1,...,Nα ∼ π and associated "pseudo-observations"
µ1,...,Nα ∼ π(· | α).
α(i) ← argmink=1,...,Nαd(sα(µk), sα(µ(i))

Algorithm 3: ABC-Gibbs sampler for hierarchical models.
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Verifying the assumptions

It is sufficient to check : ∃C compact with
πεµ(µ | α, x?) > cte > 0,∀µ ∈ C,∀α. Here,

πε(µ | α, s(x∗))

=
exp(−(µ− α)2/(2τ)

∫
exp(−(y − µ)2√n/(2σ)1|y−x̄?|<εdy∫

exp(−(µ− α)2/(2τ) exp(−(y − µ)2
√
n/(2σ)1|y−x̄?|<εdydµ

as alpha is compactly supported on [−4, 4], the conditions are
verified for any compact C: we can roughly bound the
probabilities by continuity of the expression.
The last condition on α is always verified as we have by
definition of the total variation distance:

sup
µ
‖πεα(· | µ)− πεα(· | µ)‖TV = 0.
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Results
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for ABCG : Nµ = Nα = 30,
103 iterations ;
for ABC vanilla : 1000
points, the best among
3 · 104 ;
ABC-SMC with 1000
particles, version adaptive
Del Moral, M = 30, 500
steps.
ABCG and ABC vanilla
have same computational
cost. SMC cost more than
300 times more.
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Simulations : Hierarchical G& K

G&Kdistribution defined by its quantiles :

Qgk(z;µ,B, g, k, c) = µ+B(1 + c tanh[gz/2])z(1 + z2)k

α ∈ R, with prior U([−10, 10]) ;
for each j, µj ∼ N (α, 1) ;
the other parameters : B, g, k are
known and common to each xj ;
in our examples, we have n = 50

Here, the statistics and distances are :
sα(µ, x) = µ̄
sµj (µ−j , x, α) = octiles(x), with
d = | · |1

α

µ1

µ2

...

µn

x1

x2

xn

...
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Results

For a similar
computational cost, better
results compared to ABC ;
Simple SMC-ABC fails,
parameter too difficult to
tune, the particle system
degenerates ;
however this model is not
very interesting
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"Hierarchical" G & K

α

µ1

µ2

...

µn

x1

x2

xn

...

B

g

k

For µ and α same statistics as
before;
For B, g, k octiles ;
Comparison with ABC-SMC Del
Moral and ABC vanilla, with
same computational cost :

ABCG : Nµ = 100,
Nα = NB = Ng = Nk = 50,
1000 steps ;
ABC vanilla : best 1000 points
among 105 ;
ABC-SMC : 1000 particles,
M = 5, 20 iterations.
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Results

µ1 µ2 µ3 µ4
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Method ABC Gibbs ABC−SMC vanilla ABC

ABC-Gibbs is fine. ABC
vanilla returns the prior
for the A and a vague
posterior for the other
parameters. Same for
ABC-SMC when it does
not degenerates.
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Full dependency

Heat equation : ∂τy(z, τ) = ∂z (θ(z)∂zy(z, τ)).
After discretization : recurring sequence (yj,t), with parameter :
θ = (θ1, . . . , θn) :

yj,t+1 − yj,t
3∆

+
yj+1,t+1 − yj+1,t

6∆
+
yj−1,t+1 − yj−1,t

6∆
= yj,t+1(θj+1 + θj)− yj−1,t+1θj − yj+1,t+1θj+1.

Observations : xj,t = N (yj,t, σ
2).

Parameters : θj .

xj,t
•

xj+1,t

•

xj−1,t•

θj

θj+1
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Full dependency : how to Gibbs

Here, no hierarchical structure ⇒ we cannot expect to reduce
the size of the simulations.

in vanilla ABC, s = Id, d = | · |1;
in ABC Gibbs, sj(x) = (xj−2, xj−1, xj , xj+1), d = | · |1.

As θj has a "local" effect, we restrict the statistics to a part of
the observations.
⇒ Still smaller dimension.
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Results for full dependency model

True value : 0.75, n = 20, N = 8 · 106.

ABC Gibbs Simple ABC

0.25 0.50 0.75 1.00 0.25 0.50 0.75 1.00

0

1

2

3
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To what does it converge ? hierarchical case, n=2

Let νε be the limiting law of our algorithm, and ν0 the limiting
law of our algorithm for εα = εµ = 0.

Theorem 2 (C et al. (2019))

Assume that,

L0 = sup
εα

sup
µ,µ̃
‖πεα(· | sα, µ)− π0(· | sα, µ̃)‖TV < 1/2 ,

L1(εµ) = sup
α
‖πεµ(· | x?, sµ, α)− π0(· | x?, sµ, α)‖TV −−−→

εµ→0
0 ,

L2(εα) = sup
µ
‖πεα(· | sα, µ)− π0(· | sα, µ)‖TV −−−→

εα→0
0 .

Then,

‖νε − ν0‖TV ≤
L1(εµ) + L2(εα)

1− 2L0
−−−→
ε→0

0.
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Compatibility

ν0 limiting distribution associated with a Gibbs of conditionals :

π(α)π(sα(µ) | α) and π(µ)f(sµ(x?) | α, µ).

They can be incompatible.
If sα is sufficient, when εα → 0 the limiting distribution is the
same as ABC.
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Open questions

What can be said about the incompatible case ?
⇒ it seems that the prior constrains the approximate
posterior to be a true density.
choose sα et sµ ? ⇒ small dimensioned and "locally"
informative (i.e. conditionally to the value of the
parameters) ;
weaken the assumptions of the theorems ;
adapt the result to other approximations of the
conditionals.
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