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Abstract

Getting and analyzing biological interaction networks is at the core of systems biology. To help
understanding these complex networks, many recent works have suggested to focus on motifs which
occur more frequently than expected in random. To identify such exceptional motifs in a given
network, we propose a statistical and analytical method which does not require any simulation.
For this, we first provide an analytical expression of the mean and variance of the count under
any stationary random graph model. Then we approximate the motif count distribution by a
compound Poisson distribution whose parameters are derived from the mean and variance of the
count. Thanks to simulations, we show that the quality of our compound Poisson approximation is
very good and highly better than a Gaussian or a Poisson one. The compound Poisson distribution
can then be used to get an approximate p-value and to decide if an observed count is significantly
high or not.

1 Introduction

The important progress of high-throughput biology allows us now to consider the cell as a whole
system under study. This complex system is mainly represented by various networks of interacting
components (e.g. transcriptional regulatory networks, protein-protein interaction networks, metabolic
networks). To help understanding the organization and dynamics of cell functions, one usually tries
to break down these complex networks into functional modules [7] or into basic building blocks [20].
These blocks are also called patterns of interconnection or motifs. For transcriptional regulatory
networks, some motifs such as the three-node feed-forward loop or the four-node bi-fan, may perform
specific regulatory functions [27, 16, 17, 12]. Many recent works have suggested to focus on motifs
which occur more frequently than expected in random [20, 27, 18, 23]. Such motifs seem indeed to
reflect functional or computational units which combine to regulate the cellular behavior as a whole.
Their possible function can be provided by common themes of the system in which they appear.
Additional insight may be gained by mathematical analysis of their dynamics [17, 23, 12].

The common method that has been used for now to detect significantly over-represented motifs is
based on simulations. Random graphs are first generated such that they preserve some characteristics
of the biological network like the numbers of vertices and edges or the degree sequence (numbers
of edges per vertex) [20, 19]. Then, either a z-score is calculated thanks to the empirical mean and
variance of the count [20, 18, 23], or an estimation of the empirical p-value is derived from the empirical
distribution of the count [27, 20]. Such methods are not totally satisfactory from a probabilistic point
of view. Indeed, using a z-score means to assume that the motif count follows a Gaussian distribution
which is only true asymptotically under some restrictive conditions. Moreover, to evaluate a p-value
close to zero, a huge number of simulations have to be performed, which is usually not the case in
previous studies because of high computational times. Getting theoretical properties on the motif
count distribution would then be very valuable to identify exceptional motifs.

1picard@genopole.cnrs.fr
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Several approximations have been proposed under the so-called Erdös-Rényi model (see [13] for
a complete overview). This basic model originating in [9] assumes that edges are independent and
distributed according to a Bernoulli distribution with same parameter p. It means in particular
that the probability to connect two nodes does not depend on the nodes. Under these assumptions,
Poisson and compound Poisson approximations have been first proposed for rare motifs satisfying
some conditions on their number of vertices and edges ([11, 5, 3, 15, 28]; See also [2]). The asymptotic
normality of the motif count has been also extensively studied and bounds on the approximation error
have been derived (e.g. [4, 13] and references therein). However, except for the mean count which is
simple to derive under the Erdös-Rényi model, no explicit formula of the parameters of these limiting
distributions has never been provided. In particular, no general expression exists for the variance of
the count.

However, the Erdös-Rényi random graph model does not fit biological networks essentially because
it does not take heterogeneities into account. Indeed, some nodes are very connected to others. A
very general model assuming that edges are still independent but depend on both connected vertices
has been recently studied and a method has been proposed to get the exact formulas for the mean and
variance of the motif count [6]. However, their computations appear very time consuming. The first
question we address in this paper is how to calculate in a unified way the exact mean and variance of
a motif count under any stationary random graph model. These two quantities are indeed crucial to
identify unexpected motifs. Provided that the occurrence probability of a given motif does not depend
on the occurrence position (stationary assumption) and that disjoint occurrences are independent, we
derive the expression of the first two moments of the count. In particular we treat the case of the
ERMG model in detail. This model, introduced in [8], is a mixture of a finite number of Erdös-Rényi
models, nodes being spread into classes. It encompasses the Erdös-Rényi model (a unique class of
nodes) and the heterogeneous model proposed in [6] (one class per node). Moreover, the ERMG model
is rich and flexible enough to capture relevant information on the network topology.

The second question we focus on is which approximation of the motif count distribution to use in
order to get accurate p-values. Note that no result yet exists on the exact distribution of this count.
As regard to existing theoretical results under the Erdös-Rényi model, we compare the approximation
quality of the three following distributions: the Gaussian distribution, the Poisson distribution and
the Pólya-Aeppli distribution. The later is a special compound Poisson distribution with only two
parameters. This comparison will be done thanks to simulations under the ERMG model. Parameters
of these approximate distributions will be set from the exact mean and variance of the count we provide.

For the sake of simplicity, we consider undirected graphs and motifs. However, our methodology
can be easily generalized to a directed framework as it is discussed in the conclusion.

2 Definitions and notations

Random graph with stationary distribution. Let us define a random graph G, where V denotes
the set of fixed vertices with |V| = n. Random edges are described by a set of random variables
X = {Xij , (i, j) ∈ V2} such that Xij equals 1 if nodes i and j are connected, and 0 otherwise. In the
following, we consider random graphs with stationary probability distributions, for which P(X) does
not depend on nodes. Moreover, we consider the case of non-directed graphs, meaning that Xij = Xji.

Network motif. We denote by m a network motif of size k, which is a connected subgraph with
k vertices. It is defined by a fixed topology through its adjacency matrix also denoted by m, with
general term muv = 1 if nodes u and v are connected, and 0 otherwise. A typical example is the V

motif, which can be defined by three adjacency matrices depending on the position of the central edge,
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as shown in Table 1.

m m′ m′′





0 1 1
. 0 0
. . 0









0 1 0
. 0 1
. . 0









0 0 1
. 0 1
. . 0





i2 i3

i1

i2 i3

i1

i2 i3

i1

Table 1: Non redundant permutations of the V motif at position α = (i1, i2, i3).

Position and occurrence of a motif. To define an occurrence of motif m we introduce notation
Ik which is the set of all k-tuples of V, namely

Ik =
{

{i1, . . . , ik} ⊂ {1, . . . ,N}k | ij 6= iℓ,∀j 6= ℓ
}

.

We consider α ∈ Ik, a potential position of m in G. The number of such positions is
(

n
k

)

. In order
to match a position with an adjacency matrix, we consider a specific element of {i1, . . . , ik} which is
α = (i1, . . . , ik) with i1 < . . . < ik. Then we introduce the random indicator variable Yα(m) which
equals one if motif m occurs at position α and 0 otherwise :

Yα(m) =
∏

1≤u<v≤k

Xmuv

iuiv
.

Since the distribution of X is stationary, the distribution of Yα does not depend on α, and Yα is
distributed according to a Bernoulli distribution B(µ(m)), where µ(m) is the probability of occurrence
of motif m at any position.

Motif permutation. Considering the occurrence of the V motif at position α = (i1, i2, i3) (Table
1), one can see that V occurs at α with a given permutation on indices. This is why we need to define
R(m), the set of non redundant permutations of m, and we denote ρ(m) = |R(m)|, which equals 3
in the case of the V motif, and 1 for the triangle. Note that ρ(m) = k!/|aut(m)|, where aut(m) is the
set of automorphisms of motif m: aut(m) = {σ ∈ S, σ(m) = m}, with S the set of permutations on
the vertices of m. We consider permutations of the motif rather than permutations of positions.
From a practical point of view, we propose to avoid the calculation of |aut(m)|, and to focus on
ρ(m). This calculation can be done by considering the k! simultaneous permutations of the rows and
columns of m, each new element being compared with the previous ones to check for redundancy. The
complexity of this method is then in O(k!2) and does not depend on the size of the complete graph.
Moreover, since we are searching for small-size motifs (k = 3, 4 typically), the computational time of
this procedure is moderate.
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Figure 1: A graph with 1 ▽ and 6 Vs.

Number of occurrences of m. Finally we define N(m) the count of motif m such that:

N(m) =
∑

α∈Ik

∑

m
′∈R(m)

Yα(m′).

Considering example in Figure 1, there is one occurrence of the triangle triangle at position (1, 2, 3),
6 occurrences of the V motif: one occurrence of m and m′′ at (1, 2, 3), and 4 occurrences of m′ at
positions (1, 2, 3), (1, 3, 4), (2, 3, 4), (3, 4, 5) (with m,m′,m′′ defined in Table 1).

3 Calculating moments under a stationary model

In this section, we aim at providing an automatic method to calculate the first and second moments
of N(m). This method requires the knowledge of µ(m), the probability of occurrence of motif m. In
a first step, we develop our method with µ(m) as a general term. This probability depends on the
distribution of X and its derivation under different models will be given in the next section.

Calculating the mean. This calculation can be done directly since the distribution of Yα does not
depend on α. Indeed, the stationarity assumption implies that permutations of motif m have the
same probability of occurrence (µ(m) = µ(m′) ∀m′ ∈ R(m)). It follows that:

EN(m) = |Ik| ×
∑

m
′∈R(m)

EYα(m′) =

(

n

k

)

ρ(m)µ(m). (1)

Calculating the variance. This calculation is based on the expectation of the squared count:

N2(m) =
∑

α,β∈Ik

∑

m
′,m′′∈R(m)

Yα(m′)Yβ(m′′), (2)

and each term of this sum depends on the cardinality of the intersection α ∩ β denoted by s. When
s = 0, variables Yα and Yβ are independent and E [Yα(m)Yβ(m)] = EYα(m)EYβ(m). For s ≥ 1, m′ at
α and m′′ at β share s vertices as shown in Figure 2. Then we consider all possible overlaps between
the two versions of m occurring at each position. We define the overlapping operation with s common
vertices (denoted by Ω

s
) between motifs m′ and m′′. Consequently,

∀s ≥ 1, Yα(m′)Yβ(m′′) = Yα∪β(m′Ω
s
m′′),

where m′Ω
s
m′′ represents what we call a ”super-motif”, which is a motif with (2k − s) edges made of

two overlapping occurrences of m′ and m′′, two versions of m. An example of super-motif is provided
in Figure 2.
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2

1

4

3

Figure 2: Example of motif overlap. m is present at α = (1, 2, 4) and β = (2, 3, 4). In this case
α ∩ β = (2, 4), and the super-motif m′Ω

s
m′′ is the so-called whisk graph.

To define the adjacency matrix of the super-motif, we break down m′ and m′′ such that

m′ =







m′
11

(k−s)×(k−s)

m′
12

(k−s)×s

m′
21

s×(k−s)

m′
22

s×s






, m′′ =







m′′
11

s×s

m′′
12

s×(k−s)

m′′
21

(k−s)×s

m′′
22

(k−s)×(k−s)






,

where m′
22 and m

′′

11 correspond to vertices in α ∩ β, and we set

m′Ω
s
m′′ =





m′
11 m′

12 0

m′
21 max(m′

22,m
′′
11) m′′

12

0 m′′
21 m′′

22



 .

The max function in the central term indicates that for the s common vertices of α and β, all edges
of m′

22 and m′′
11 must be present; It is equivalent to the logical OR. Note that the operation Ω

s
is not

symmetric. Note that we also have to consider the number of possible overlaps of m′Ω
s
m′′ which is

|R(m)|2. The complexity of this enumeration is therefore smaller than O(k!2).

The squared count can be rewritten as

N2(m) =

k
∑

s=0

∑

α, β ∈ Ik :
|α ∩ β| = s

∑

m
′,m′′∈R(m)

Yα∪β(m′Ω
s
m′′),

and its expectation is:

EN2(m) = C1(n, k)





∑

m
′∈R(m)

µ(m′)





2

+

k
∑

s=1

C2(n, k, s)
∑

m
′,m′′∈R(m)

µ(m′Ω
s
m′′). (3)

where coefficients C1(n, k) and C2(n, k, s) are the multinomial coefficients: C1(n, k) =
(

n
n−2k,k,k

)

and

C2(n, k, s) =
(

n
k−s,s,k−s,n−2k−s

)

. The first term (disjoint positions α and β) requires that disjoint
occurrences are independent. Put together, we can derive the formula for the variance of the count
since VN(m) = EN2(m) − E

2N(m).

4 ERMG: a stationary random graph model

Once the method to calculate the first and second moments of the count has been settled, we need
to choose an appropriate model for the distribution of X in order to calculate µ(m), the probability
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of occurrence of motif m. One basic model is the Erdös-Rényi model [10] in which the probability of
connection between two vertices is constant and equals p. In this framework, µ(m) resumes to the
probability for vertices of motif m to be connected. Denoting by v(m) the number of vertices of m

we have µ(m) = pv(m). Note that even if the expectation of the count is very simple in this case,
calculating the variance still requires to calculate the occurrence probabilities of all super-motifs for
which no simplification exists.

Despite a simple formulation and important theoretical results, it is now well accepted that the
Erdös-Rényi model fits the data poorly [1]. Alternative models have been proposed to describe real
networks [1, 22, 21]. Nevertheless, they are mainly based on summary statistics such as the degree
distribution, which hampers the exact calculation of µ(m). Indeed, calculating µ(m) requires a
probabilistic distribution on X. In a recent publication, the calculus of the expectation and the
variance of the count has been proposed under a heterogeneous model with Pr{Xij = 1} ∝ kikj,
where ki stands for the degree of node i [6]. Nevertheless, the fact that the distribution of X is not
stationary leads to a procedure which is difficult to use in practice.

In this work, we propose to use ERMG (Erdös-Rényi Mixture for Graphs) as an alternative to the
Erdös-Rényi model [8]. This model has been developed to fit the connection heterogeneity which is
observed in real networks. Its core hypothesis is that nodes are spread among Q hidden classes with
proportion α1, . . . , αQ. Denoting by Zis the independent random variables which equal q if node i
belongs to class q, the conditional distribution of Xij is such that:

Xij |{Zi = q, Zj = ℓ} ∼ B(πqℓ).

Consequently, the marginal distribution of X is a mixture of Bernoulli distributions. Under the ERMG
model, two disjoint motif occurrences are independent and the probability of occurrence of motif m

is:

µ(m) =

Q
∑

c1=1

. . .

Q
∑

ck=1

P(Z1 = c1, . . . , Zk = ck) × P(Yα(m) = 1|Z1 = c1, . . . , Zk = ck)

=

Q
∑

c1=1

. . .

Q
∑

ck=1

αc1 . . . αck

∏

1≤u<v≤k

πmuv

cucv
.

Taking motif V as an example, we have:

µ(V) =

Q
∑

c1=1

Q
∑

c2=1

Q
∑

c3=1

αc1αc2αc3πc1c2πc1c3 .

5 Compound Poisson approximation

The knowledge of the moments of the count under some null model is not sufficient to assess its
significance. To decide whether a motif m is over-represented in a given network, one typically needs
to calculate the probability

Pr{N(m) ≥ Nobs(m)},

where Nobs(m) is the observed number of occurrences of m and N(m) the random number of occur-
rence under the reference model. To do so, we need to specify the distribution of N(m) under the
reference model. Unfortunately, even in the Erdös-Rényi model, the exact distribution seems very
difficult to derive, so only an approximate distribution can be proposed at this time.
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One particularity of network motifs is that their occurrences naturally tend to overlap. Two
occurrences of a motif m overlap if they share at least one vertex; A motif is overlapping if two
of its occurrences may overlap. Consequently all network motifs are actually overlapping. Thus, the
approximate distribution must account for the existence of clumps, i.e. sets of overlapping occurrences.
Clumps result in numerous occurrences with a reduced number of vertices. For example, an occurrence
of the four-branch star motif accounts for 4 overlapping occurrences of the three-branch star motif,
i.e. for a clump of size 4 involving only 5 vertices. Another example is provided with the whisk motif
in Figure 2 which shows 3 occurrences of the V motif at position (1, 2, 3), leading to a clump of size 3
involving 4 vertices.

Compound Poisson distributions are particularly relevant to describe how the count of an event
occurring in clumps may vary. The number of clumps is supposed to have a Poisson distribution
with mean λ, and the clump sizes are supposed to be independent with common distribution. The
Pólya-Aeppli (denoted by PA) distribution (or geometric Poisson, [14]) is obtained when the clump
size has a geometric distribution G(1 − a), so the mean size of a clump is (1 − a)−1. In this case, the
number of observed events W has distribution PA(λ, a):

W ∼ PA(λ, a) ⇔ Pr{W = w} =











e−λaw
∑

c=1..w

1

c!

(

w − 1

c − 1

)[

λ(1 − a)

a

]c

if w > 0,

e−λ if w = 0.

We propose to use the Pólya-Aeppli distribution as an approximation of the distribution of the
count N(m) for several reasons. (i) This distribution is an excellent approximation (from both a
theoretical and a practical point of view) for word counts in random sequences [26, 25]) (ii) The
Pólya-Aeppli distribution only involves two parameters that can be easily computed when the first
two moments are known. (iii) Finally, simulations show that it fits the observed distribution well for
the ERMG model (see next section). Note that argument (i) is not sufficient because the topology
of a network motif is quite different from the topology of a sequence motif. Still, parameter a can be
interpreted as the overlapping probability of the motif m, i.e. the probability that an occurrence of
m overlaps another one.

The first two moments of the PA(λ, a) distribution are λ/(1 − a) and λ(1 + a)/(1 − a)2. Given
these moments, parameters can be calculated as:

a = [EN(m) − VN(m)]/[EN(m) + VN(m)], λ = (1 − a)EN(m). (4)

p-values can be calculated in a quadratic time using the algorithm given in [24].

6 Simulation study

Simulation design. The objective of the simulations is to compare the Gaussian, Poisson and Pólya-
Aeppli approximations of the distribution of the motif counts. We simulate networks following an
ERMG model with two groups. Connectivity parameters are π11 = π22 = ηγ and π12 = π21 = η(1−γ),
where η is a scale parameter and γ characterizes the between and within group connectivities. The
proportions of the groups are α and 1 − α. The mean connectivity is π = α2π11 + 2α(1 − α)π12 +
(1 − α)2π22. Parameters α (0.1 and 0.5), γ (0.1, 0.5 and 0.9), n (20 and 200), and π (1/n and 2/n),
have been chosen to cover a large range for E(N(m)) (from 0.07 to 1075.5). This design would lead to
3 × 23 = 24 cases. However the ERMG with γ = 0.5 is the Erdös-Rényi model with p = π for any α,
a feature which reduces the number of cases to 20. The numbers of simulations are 10 000 for n = 20
and 1 000 for n = 200. The motifs studied, defined in Table 2, are of size 3 or 4 and have a high or
low self-overlapping structure.
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Motif

Name V ▽ ⋌ �

Table 2: Motifs used in the simulation

Approximate distributions of the count. There is a good agreement between the exact and
the empirical means and variances for all the simulated cases (results not shown, see supplementary
material). We can see in Table 3 that, excepted for rare motifs, the variance is much higher than
the mean, so that the Poisson approximation is not valid. This is illustrated by Figure 3 (second and
third rows).

Parameters of the approximate Gaussian distribution are E(N(m)) and V(N(m)). Parameters (λ,
a) of the approximate Pólya-Aeppli distribution are computed using formula (4). Parameter values
are given in Table 3 for motifs V and �. Motifs V and ⋌ have a high overlapping probability a, which
means that they are more clumped than the two other motifs. For example, parameter a for motif
⋌ is equal to 0.982 in the case n = 200, π = 0.01, α = 0.1, γ = 0.1. According to the Pólya-Aeppli
paradigm, the picture is the following: motifs ⋌ occur in clumps with mean size 1/(1 − a) = 55.6,
the mean number of clumps being equal to λ = 19.28. As the Pólya-Aeppli distribution is only an
approximation of the true distribution, we do not claim that the latter description is exact. It only
gives an interesting indication about the clumping of the motifs.

Histograms and PP-plots (Figure 3), for the motifs V and � are given in three cases (E(N(m)) ≃ 1,
E(N(m)) ≃ 10 and E(N(m)) ≃ 100) in Figure 3. Table 3 contains the results about the quality of
approximation of respectively the Gaussian and the Pólya-Aeppli distributions based on the exact
first two moments for the motifs V and � (corresponding tables for the motifs ▽ and ⋌ are presented
in the supplementary material). The quality of the Poisson approximation is not given, because it is
clearly not valid for frequent motifs, and is not different from the Pólya-Aeppli approximation for rare
motifs. The comparison is based on two criteria:

• The total variation distance D = 1
2

∑

i |oi−ti| between the theoretical and empirical distributions,
where oi and ti are respectively the observed and theoretical frequency for the count i. This
criterion allows a comparison along the whole range of the random variable. In practice we are
often more concerned by the tails of the distribution for computing the p-values of the counts.

• F̂ (QG) and F̂ (QP ) are the empirical probability of exceeding the 0.99 Gauss (QG) and Pólya-
Aeppli (QP ) quantiles respectively. This criterion should be close to 0.01. Similar results are
obtained for the lower tail of the distribution (not shown).

Three conclusions appear:

1. The Pólya-Aeppli approximation outperforms the Gaussian approximation for both criteria in
all cases.

2. The 0.99 quantile is underestimated by the Gaussian approximation. This implies that using
z-scores leads to many false positives. On the opposite this quantile is well estimated by the
Pólya-Aeppli approximation. However the tail values greater than 0.99, such as 0.999 or 0.9999,
have not been explored because a too small number of simulations, so that this conclusion is
limited to the studied range of moderate tail values.

3. The total variation distance between approximate and empirical distributions is high for both
approximations in some cases, especially for frequent and highly self-overlapping motifs. This is

8
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explained by the odd distribution of the simulation counts: it is not smooth, has many modes
and present periodic patterns (see Figure 3). This could be due by the clump size distribution
which is not geometric and seems to have several modes. However, even in these cases, the
Pólya-Aeppli approximation of the 0.99 quantile is good.

7 Conclusion

We provide an exact method to calculate the mean and variance of the count of any network motif,
whatever its topology. These formula hold for any stationary random graph model satisfying the
independence property of disjoint motif occurrences. The Pólya-Aeppli approximation is accurate
in a large range of situations, and we demonstrated that the Gaussian and Poisson approximations
are not satisfactory. Consequently, strategies based on z-scores are not reliable. In addition, p-
values can be easily computed thanks to the Pólya-Aeppli approximation we propose. This direct
computation avoids simulations which should be very numerous to be accurate in the case of small
p-values. Typically, a p-value of about 103 would require at least 105 simulations.

The generalization of our method to the oriented case is straightforward. In this case adjacency
matrices X and m are not symmetric anymore, and formula to calculate the mean and variance still
hold. The ERMG model can also be used for directed graphs.
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Table 3: Mean and variance of the number of occurrences of motifs V and � in an ERMG network defined by n, α, γ and π, and quality of the
Gaussian and Pólya-Aeppli approximations. E and V: exact mean and variance of the motif count. λ, a: corresponding parameters of the Pólya-
Aeppli distribution. DG and DP : total variation distances between the empirical distribution and the Gaussian and the Pólya-Aeppli distributions
respectively. F̂G and F̂P : empirical probabilities of exceeding the 0.99 Gaussian and Pólya-Aeppli quantiles. α, γ, π, DG, DP, F̂G and F̂P are expressed
in percentage.

simulation parameters motif V motif �

n π α γ
20 5 10 10
20 5 10 90
20 5 50 10
20 5 50 50
20 5 50 90
20 10 10 10
20 10 10 90
20 10 50 10
20 10 50 50
20 10 50 90
200 0.5 10 10
200 0.5 10 90
200 0.5 50 10
200 0.5 50 50
200 0.5 50 90
200 1 10 10
200 1 10 90
200 1 50 10
200 1 50 50
200 1 50 90

E V λ a DG DP F̂G F̂P

13.84 142.8 2.45 0.82 18.2 6.8 3.1 1.1
9.1 44.6 3.08 0.66 15.6 5.1 3.2 1.2
8.55 35.9 3.29 0.62 14.8 4.4 2.9 1.3
8.55 37.0 3.21 0.62 15.9 5.3 3.2 1.1
8.55 38.3 3.12 0.63 15.6 5.7 3.4 1.4
55.38 1406.3 4.2 0.92 11 9.2 2.1 0.5
36.41 330.9 7.22 0.8 12.3 4.4 3 1.5
34.2 236.2 8.65 0.75 10.3 4.3 2.5 1.1
34.2 249.3 8.25 0.76 10.7 4.1 2.6 1.3
34.2 267.0 7.76 0.77 12.5 5.9 2.8 1.4
159.5 2034.0 23.1 0.85 20.4 19.7 2.5 1.6
104.9 590.5 31.6 0.7 15.2 14 1.9 1.2
98.5 484.0 33.3 0.66 13.1 12.6 1.1 0.7
98.5 484.0 33.2 0.66 14.3 13.2 1.6 1.1
98.5 488.4 33.1 0.66 14.5 14.8 2.5 0.9
638 21345.2 37.1 0.94 32.8 32.7 1.5 1.2

419.4 4637.6 69.7 0.83 23.1 22.9 2 1.5
394 3457.4 80.6 0.8 21.4 21 2.9 0.8
394 3457.4 80.2 0.8 20.8 20.6 1.3 0.8
394 3492.8 79.8 0.8 19.8 19.7 1.4 1

E V λ a DG DP F̂G F̂P

0.34 0.96 0.18 0.47 36.0 5.2 3.7 0.9
0.12 0.17 0.1 0.17 2.8 1.4 10.3 0.3
0.13 0.18 0.11 0.17 2.2 1.0 10 0.5
0.09 0.12 0.08 0.13 12.1 0.6 7.8 0.9
0.13 0.19 0.1 0.2 3.4 1.6 10.5 0.5
5.47 75.69 0.74 0.87 34.8 18.6 3.8 1
1.93 6.40 0.89 0.54 26.8 11.0 4.4 1.5
2.05 6.55 0.98 0.52 25.1 11.2 4.4 1.1
1.45 3.84 0.8 0.45 25.7 8.5 4.6 1.3
2.05 7.84 0.85 0.59 26.9 14.8 3.4 1.1
0.46 0.58 0.41 0.11 21.8 1.8 7.9 0.7
0.16 0.17 0.16 0.03 4.2 1.4 15.4 0.9
0.17 0.18 0.17 0.03 4.0 2.5 17.8 1.9
0.12 0.13 0.12 0.02 12.1 0.5 11.7 0.9
0.17 0.18 0.17 0.03 3.1 1.6 16.9 1.9
7.31 21.72 3.68 0.5 11.8 5.4 3.2 0.9
2.57 3.42 2.21 0.14 9.3 2.7 3.6 0.5
2.74 3.69 2.33 0.15 12.3 3.6 4.7 1.2
1.94 2.40 1.74 0.1 11.3 2.0 3.2 1.6
2.74 3.72 2.32 0.15 10.8 4.5 3.7 0.7
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Figure 3: Empirical, Gaussian (red), Poisson (black) and Pólya-Aeppli (green) distributions. Left column:
histograms, right column: PP-plots. First row: rare motif, number of motif � in an ERMG with n = 200,π =
0.005, α = 0.1, γ = 0.9, second row: medium motif, number of motif � in an ERMG with n = 200,π = 0.01,
α = 0.1, γ = 0.1, third row: frequent motif, number of motif V in an ERMG with n = 200,π = 0.005, α = 0.5,
γ = 0.1 .
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