[1]
|
Gildas Mazo and Laurent Tournier.
An inference method for global sensitivity analysis.
working paper or preprint, 2024.
[ bib |
http ]
|
[2]
|
Henri Mermoz Kouye, Gildas Mazo, Clémentine Prieur, and Elisabeta Vergu.
Performing global sensitivity analysis on simulations of a
continuous-time Markov chain model motivated by epidemiology.
Computational and Applied Mathematics, 43(409), 2024.
Postprint available at https://hal.archives-ouvertes.fr/hal-03565729.
[ bib |
DOI ]
|
[3]
|
Michael Levine and Gildas Mazo.
A smoothed semiparametric likelihood for estimation of nonparametric
finite mixture models with a copula-based dependence structure.
Computational Statistics, 2024.
Accepted for publication. Postprint available at
https://hal.inrae.fr/hal-03900661.
[ bib ]
|
[4]
|
Gildas Mazo, Dimitris Karlis, and Andrea Rau.
A randomized pairwise likelihood method for complex statistical
inferences.
Journal of the American Statistical Association, 0(ja):1--19,
2023.
[ bib |
DOI |
http ]
|
[5]
|
Gildas Mazo.
A trade-off between explorations and repetitions for estimators of
two global sensitivity indices in stochastic models induced by probability
measures.
SIAM/ASA Journal on Uncertainty Quantification,
9(4):1673--1713, 2021.
[ bib |
DOI |
http ]
|
[6]
|
S. Asenova, G. Mazo, and J. Segers.
Inference on extremal dependence in the domain of attraction of a
structured Hüsler-Reiss distribution motivated by a Markov tree with
latent variables.
Extremes, 24:461--500, 2021.
[ bib |
DOI |
http ]
|
[7]
|
G. Mazo and F. Portier.
Parametric versus nonparametric: the fitness coefficient.
Scandinavian Journal of Statistics, 48:1344--1383, 2021.
[ bib |
DOI |
http ]
|
[8]
|
G. Mazo and Y. Averyanov.
Constraining kernel estimators in semiparametric copula mixture
models.
Computational Statistics and Data Analysis, 138:170--189, 2019.
[ bib |
DOI |
http ]
|
[9]
|
G. Mazo.
A semiparametric and location-shift copula-based mixture model.
Journal of Classification, 34(3):444--464, 2017.
[ bib |
DOI |
http ]
|
[10]
|
F. Durante, S. Girard, and G. Mazo.
Marshall-olkin type copulas generated by a global shock.
Journal of Computational and Applied Mathematics, 296:638--648,
2016.
[ bib |
DOI |
http ]
|
[11]
|
G. Mazo, S. Girard, and F. Forbes.
A flexible and tractable class of one-factor copulas.
Statistics and Computing, 26:965--979, 2016.
[ bib |
DOI |
http ]
|
[12]
|
G. Mazo, S. Girard, and F. Forbes.
Weighted least square inference for multivariate copulas ba sed on
dependence coefficients.
ESAIM: Probability and Statistics, 19:746--765, 2015.
[ bib |
DOI |
http ]
|
[13]
|
G. Mazo, S. Girard, and F. Forbes.
A class of multivariate copulas based on products of bivariate
copulas.
Journal of Multivariate Analysis, 140:363--376, 2015.
[ bib |
DOI |
http ]
|
[14]
|
B. Barroca, P. Bernardara, S. Girard, and G. Mazo.
Can uncertainty in hazard evaluation be used as guidance for
implementation strategies in urban resilience?
Natural Hazards and Earth System Sciences, 15:25--34, 2015.
[ bib |
DOI |
http ]
|
[15]
|
Fabrizio Durante, Stéphane Girard, and Gildas Mazo.
Copulas based on Marshall-Olkin machinery.
In Umberto Cherubini, Fabrizio Durante, and Sabrina Mulinacci,
editors, Marshall-Olkin Distributions---Advances in Theory and
Applications, pages 15--31, 2015.
[ bib ]
|
[16]
|
C. Sabbah, G. Mazo, C. Paccard, F. Reyal, and P. Hupé.
Smethillium: spatial normalization method for illumina infinium
humanmethylation beadchip.
Bioinformatics, 27(12):1693--1695, 2011.
[ bib |
DOI |
http ]
|